1.7 THE RELATIONSHIP BETWEEN STRESS AND RATE OF STRAIN

We will now split the stress tensor into isotropic and deviatoric parts by

writing
%ij = — PO+ dy

Since we know that 0;; is symmetric it follows that dij must be also.

J
To gain some insight in how to choose di_j we consider a 2D example (see diagram):
Consider the line elements AB and AC to be initially perpendicular.

The angular velocity or rotation of AB relative to A is du,/dx,.

The rotation of AC relative to A is — 3u,/3x,. Therefore the average rotation is
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20x, 9x,"

The stretching per unit length of AB relative to A is du,/9x, and that of AC
relative to A is du,/3x,.

ou,

Therefore the average stretching per unit length is ”l’(ax —}-8—"—12
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In general, performing a 3D Taylor expansion about a point we have:
u(x+8%) = u(x)+(6x.V)u+0(6x)°
so that to order 6x:

bu; = [ux+ox)—ux] = 8x;Pu;/9x; (sc)
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The first term represents stretching of a fluid element so we define the

rate of strain tensor eij by:

e.. = l(?f_l_i +?_EJ)

1] 2'9x.  3x,
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Note that &ij is symmetric. The second term above represents rotation without
deformation with angular velocity %curl u. The quantity curl u is the vorticity of

the fluid. If the vorticity is zero the fluid is known as irrotational. Incompressible,
irrotational flows were dealt with in the 2nd year fluids course (the governing
equation is Laplace’s equation for the velocity potential). A flow without vorticity

is necesssarily inviscid, but inviscid flows may possess vorticity.



We now wish to postulate a form for the deviatoric part of the stress
tensor. From above we see that deformation of fluid elements only occurs through
the rate of strain tensor € We shall follow the ideas of Stokes and assume that

the fluid has the following properties:

(i) The relation between stress and rate of strain is independent of the rigid body
rotation of a fluid element, in other words:
dij = some function of &

(ii) The fluid is homogeneous: the properties of the fluid do not vary with position.

This means that dij does not depend explicitly on x.

(iii) The fluid is isotropic: there is no preferred direction that the fluid 'wants’ to

travel in.

(iv) In the absence of motion, the stress is hydrostatic. In other words, when e is

zero we have dij zero also, so that o; —pGiJ-. We call —p the pressure at a point,

j=
and it is the mean of the three normal stresses at that point (see diagram) if there

is no motion.

These four properties define a Stokesian fluid. Experimentally, it has been shown
that a large class of fluids appear to be Stokesian.
In addition, for the purposes of this course we make the following further

assumption:

(v) We assume the fluid to be Newtonian: this means that there is a linear
relationship between stress and rate of strain. This assumption has been validated

experimentally under a wide range of conditions.

Assumptions (i), (iv) and (v) together imply that

dij = Ajjkm®km (sc)
where A is some tensor.
Assumption (iii) implies that A is isotropic which means that it can be written in the

form
Ajjkm = HO05p0 jm T 1030 1 +M; 8y

{the most general form for a fourth order isotropic tensor)



where u, u’ and N are all scalar quantities (see M2MI)+and are independent of x in

view of assumption (ii). Now, since dij is symmetric we must have Aijkm = Ajikm i
and this implies 4’ = u. So dij can be written in the form
dij = 40 im+0imd 1) exm + MiPrmCrm
= Hoej; t uey + Mjjeyy
= 2U &j -+ Mijekk (since eij=eji) (sc)
Thus we have Cij = —pé'ij + 2“eij + mijekk‘

If we denote by —p (hydrostatic pressure) the mean of the normal stresses, i.e.

—p = %(0'11 4022 4+033),
then we have (putting i=j above):

= p—p = Gu-+Ndiv u
= (by continuity eqn) p—p = _(§ﬂ+)\)%‘;_€_

The term in brackets is known as the coefficient of bulk viscosity. For

compressible fluids, p is taken to be the thermodynamic pressure which can be
found from the equation of state. It is common to take this equal to the hydrostatic
pressure p, in which case we must have

N = —2u/3
(For incompressible fluids, epk =0, so that A\ does not appear in our expression for

o so that this final assumption is not required).

The full expression for the stress tensor is now

Note that ek = entexteypn= div u. The constant scalar 4 is known as
the coefficient of viscosity of the fluid. Typical values are 0.0002 g/cm/sec (air),

0.01 {water), 23.3 (glycerine).

T or +he kook Eﬂ Aris (see, recommended readi'/\j)



We can now substitute our form for the stress tensor into Cauchy’s equation of

motion:
% = pg. + o |_ pé.. + 2#(3.._16..3 )
dt i ij 1j ij 37ijkk

3
= pg; — 5;% + 2#5‘?{3[(3”—%6”31(1()] (sc)

since the coefficient of viscosity u is independent of X. Analysing the terms in the

square bracket we see that:

3 e;. du. oJu; 3%u. du.
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= v + vaiv 1_1)]i
and

du
9 (5. . = O — 9 (_ky _ .
3Xj(6iJekk) 8Xi(ekk) axi(axk) [Y(dlv E)]i
Substituting these expressions into the equation of motion we have

Py = B — [Yp]i + M[VZE + 3¥div 1_1)]i

Writing in terms of vectors:

du 1

3t — & — 5¥p + y[v?u + %Y(div )} NAVIER-STOKES EQN OF MOTION

where we have defined v = u/p = the kinematic viscosity of the fluid.




