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Abstract

In the late 1950’s, B. Segre introduced the fundamental notion of arcs and complete
arcs [48, 49]. An arc in a finite projective plane is a set of points with no three on a
line and it is complete if cannot be extended without violating this property. Given a
projective plane P, determining n(P), the size of its smallest complete arc, has been a
major open question in finite geometry for several decades. Assume that P has order ¢,
it was shown by Lunelli and Sce [41], more than 40 years ago, that n(P) > 1/2q. Apart
from this bound, practically nothing was known about n(P), except for the case P is
the Galois plane. For this case, the best upper bound, prior to this paper, was O(q3/4)
obtained by Sz6nyi using the properties of the Galois field GF(q).

In this paper, we prove that n(P) < ,/qlog®q for any projective plane P of order
q, where c is a universal constant. Together with Lunelli-Sce’s lower bound, our result
determines n(P) up to a polylogarithmic factor. Our proof uses a probabilistic method
known as the dynamic random contruction or Rédl’s nibble. The proof also gives a
quick randomized algorithm which produces a small complete arc with high probability.

The key ingredient of our proof is a new concentration result, which applies for
non-Lipschitz functions and is of independent interest.

1 INTRODUCTION

A projective plane of order ¢ consists of a set of ¢+ ¢+ 1 points and a set of ¢ +q+1
lines, where each line contains exactly g+ 1 points and two distinct points lie on exactly
one line. It is easy to deduce from the definition that each point is contained in exactly
g+1 lines and two distinct lines have exactly one common point. Finite projective planes
are fundamental object in combinatorics and several related areas such as coding theory;
for more details about projective planes we refer to [25] and [32]. Throughout the paper,
we assume that our projective plane has order q.

The most important example of a projective plane is, perhaps, the Galois plane PG(2,q),
constructed as follows. Let V' be the vector space of dimension three over the Galois Field
GF(q), where ¢ is a prime power. The points and lines of the projective plane PG(2,q) are
the 1 and 2 dimensional subspaces of V', respectively, with the natural inclusion. For large
q, there are many planes of order ¢ not isomorphic to PG(2,q). On the other hand, it is
not known whether there exists a projective plane of order not a prime power.
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In the late 1950’s, B. Segre ([48, 49]) introduced the notions of arcs and complete arcs.
An arcin a plane is a set of points with no three on a line and maximal arcs under the set
inclusion are called complete arcs. A line containing two points of an arc is called a secant.
By definition, an arc is complete if and only if its secants cover the whole plane. Segre [48]
asked the following fundamental question

In a plane P of order q, how many points can a complete arc have ?

Since Segre’s introduction, this question has become one of the main research topics in
finite geometry. Especially, the problems of finding the maximum and minimum possible
sizes of complete arcs and characterizing those complete arcs have attracted much attention.

For the maximum size, it is fairly trivial that an arc cannot have more than ¢+ 2 points
(the reader may consider it an easy exercise). Segre himself proved that for odd ¢, an arc
of PG(2,q) has at most ¢+ 1 points, and the maximum is attained if and only if the arc
is a conic, which is basically the set of points (z,y,z) satisfying 2z = y2. (Of course, with
respect to the definition of PG(2,q) given above, a point (x,y,z) actually means the one
dimensional subspace generated by (x,y,z).) For even ¢, the maximum is g+ 2, but the
characterization of all such arcs is still not completed [10]. The second largest cardinalities
have been studied too (see e.g. [27, 28, 29, 10, 53] and references therein).

The other direction, the minimum possible size, seems to be more interesting from the
combinatorial point of view since it is a mini-max question. Given a plane P of order ¢, we
denote by n(P) the size of a smallest complete arc in P. The main goal of this paper is to
give a nearly sharp estimate on n(P). But before presenting our result, let us give a brief
review of the long and rich history of this fundamental problem.

The first lower bound on n(P) was obtained by Lunelli and Sce [41] about 40 years
ago, shortly after the introduction of arcs. This bound is (2q)1/ 2 and its proof is quite
simple. Observe that the union of the secants of a complete arc should cover all ¢>+qg+1
points, and each secant covers ¢+ 1 points, it follows that a complete arc must have at
least (¢>+q+1)/(q+1) > ¢ secants. To have g secants, the arc should have at least (2¢)'/?
points. Notice that this proof does not make use of the crucial property that an arc does
not contain three co-linear points. Therefore, the bound is true for all sets whose secants
cover the whole plane. Sets with this property are called saturated and have been studied
by various authors [40, 7, 57].

The only improvements over Lunelli and Sce’s bound in the last 40 years that we know
of are the results of Blokhuis [9] and Ball [6], who improved it to (3¢)'/? for PG(2,q), where
q is prime and the square of a prime, respectively. It is not known whether this improved
bound holds for every Galois plane, although Blokhuis conjectured that this should be the
case [11]. Fisher [21] (see also [11]) used computer simulations to generate complete arcs
in many planes of small orders, and conjectured that the average size of a complete arc
is about (3¢qlogq)’/?. In relation to this conjecture, Szényi [56] proved that there exist
certain planes, called André planes, of order ¢ which contain complete arcs of size at most
cqt/? log? ¢ for some constant ¢. Although this bound is quite close to the lower bound of
Lunelli and Sce, Szonyi’s proof has a somewhat different nature. Instead of proving the
existence of small complete arcs in a given plane, he constructed a plane together with a
small complete arc in it.

The above mentioned results strongly support the conjecture that n(P) should be fairly



close to ¢'/2. Indeed, de Resmini ([11]) made a very precise conjecture for PG(2,q):
n(PG(2,q)) = |3¢"/?—2] if ¢ is even and n(PG(2,q)) = |3¢"/?>—3] if ¢ is odd. Small
complete arcs were also studied in relation with blocking sets and for more details we refer
to [8, 13, 14, 15].

There have been a large number of attempts to construct small complete arcs in order to
obtain a good upper bound for n(P). Somewhat surprisingly, this problem is hard even at
the very beginning. While an arc cannot have more than ¢+ 2 points, it is already difficult
to construct a complete arc having eq points, for a small constant e. Most of the attempts
focus on the Galois plane PG(2,q) and in the remaining of this paragraph and the next
paragraph we restrict ourselves to this plane. The first important result was a construction
by Abatangelo [1], which gives a complete arc of size roughly ¢/3. The main idea of this
construction followed a suggestion of Segre and Lombardo-Radice [50, 42]: choose a special
small set of points from a proper algebraic curve (which itself is an arc but of large size)
and next show that the secants of the chosen set cover most of the points of the plane,
then extend the set if necessary to be complete. This idea was also applied in other papers
including [17, 19, 20, 67] to construct arcs of somewhat larger sizes.

To show that the secants cover almost the whole plane, Abatangelo applied a deep
theorem of Weil in algebraic geometry, which estimates the number of solutions of equations
of a certain type. Using a similar idea, Korchméros [39] improved the bound to ¢/4.
Bounds better than (q) requires more sophisticated algebraic techniques which have been
developed in a sequence of papers [58, 59, 67, 47, 51| (see also [53, 54, 55] for surveys).
In [52], Szényi proved that n(PG(2,q)) < cg®/*, where ¢ is a constant not depend on g¢.
Szényi’s bound was the best upper bound known prior to this paper.

The main back-draft of the algebraic technique is that it can hardly be applied without
the presence of the Galois field GF(q). Consequently, very little has been known about
complete arcs of planes other than PG(2,q). For instance, for a general plane, no upper
bound substantially better than (¢+1)/2 (see [26]) had been proved prior to this paper.
Taking into account the trivial fact that an arc cannot have more than ¢+ 2 points, this
rather weak bound underlines the difficulty of the problem.

In this paper, we obtain a major improvement concerning the upper bound of n(P) for
a general plane. Our main theorem is the following

Theorem 1.1 There are positive constants ¢ and M such that the following holds. In every
projective plane of order ¢ > M, there is a complete arc of size at most q'/? log©q.

Theorem 1.1, together with Lunelli-Sce’s lower bound, determines n(P) up to a poly-
logarithmic factor. As our arc is created in a random manner, the result also gives some
support to Fisher’s conjecture.

The proof of Theorem 1.1 brings a very useful by-product. To prove it, we have discov-
ered a new and powerful concentration result (see Section 4), which, since the completion
of this paper, has become a topic in itself. This result and its variants have found many
applications in diverse areas, ranging from the theory of random graphs to additive number
theory, leading to remarkable improvements in several old problems. For instance, a vari-
ant of this result plays an essential role in the solution of Nathanson’s conjecture on the
existence of thin Waring’s basis [62]. The interested reader is referred to [60] for a recent
survey.



In order to obtain Theorem 1.1, we actually prove a stronger result

Theorem 1.2 There are absolute constants ¢ and M such that in any projective plane of
order ¢ > M, one can find an arc with @(ql/2 logl/2 q) points whose secants cover all but
q'/? log®q points of the plane.

Throughout the paper, we assume that ¢ is sufficiently large, whenever needed. The
asymptotic notations 0,0, ..., ect are used under the assumption that ¢ — oo.

It is easy to derive Theorem 1.1 from Theorem 1.2. Let us remark here that our proof
of Theorem 1.2 also provides an efficient randomized algorithm which produces the desired
arc with probability close to 1. This algorithms runs in polylog(q) steps, where each step
consist of O(g*) basic operations. Theorem 1.2 also implies the following corollary.

Corollary 1.3 There are positive constants c,,c, and M such that in any projective plane

of order ¢ > M, one can find a complete arc of size between ciql/2 logl/Qq and ¢*/?log® q.
1

The proof of Theorem 1.2 uses the dynamic random contruction (or Rédl’s nibble
method), whose description is given in the next section. Section 3 presents our main lemma
and the proof of Theorem 1.2 via this lemma. In Section 4, we provide the key tools to
prove the main lemma. These includes the new concentration result mentioned earlier. The
proof of the main lemma follows in Section 5. The last section is for several remarks and
open questions.

2 DYNAMIC RANDOM CONSTRUCTION

2.1 The nibble method

As already mentioned, the desired arc in Theorem 1.2 is produced by a randomized algo-
rithm with polynomial number of basic operations. One basic operation consists of either
checking the incidence of a point and a line, or deleting a point from a line. This algo-
rithm is based on the nibble method, a powerful and sophisticated tool from probabilistic
combinatorics. In the following, we give a brief introduction to this method.

When one wants to construct an object with certain structural constrains such as pack-
ings, covers, graphs without certain small subgraphs and arcs in a plane, random greedy
construction is considered a natural way to generate it: Randomly order all possible ele-
ments of the desired object and select each of them one by one in the order if and only
if it together with already selected ones cause no conflict, i.e. no violation to the given
constrains. Here we mean by “select” that we choose and permanently add it to the desired
object being constructed. We may discard at each step all elements that cause any conflict
with already selected ones and then randomly select a non-discarded one. This is an equiv-
alent construction and will be called the random greedy construction (RGC) which stands
for random greedy construction. For example, the RGC of a complete arc is the following.
Initially, the arc being constructed is empty. At each step, discard all points contained
in any secant of already selected points and select one non-discarded point uniformly at
random. Then the set of all selected points is a complete arc. In many cases, it is believed
that the RGC yields an almost optimal desired object. However, proving it seems to be



very hard. For the case of complete arcs, we believe that the resulting complete arc is of
size at most ¢%/2*¢ but have no idea to prove it.

The nibble method, or dynamic random construction using nibble (DRC), is an ap-
proximated version of RGC. DRC has been initiated by a seminal paper of Ajtai, Komlds
and Szemerédi [2] to construct a large independent set of a triangle-free graph and be-
come well-known to combinatorialists by Rodl [46] who used the construction to settle the
Erdés-Hanani conjecture regarding Steiner systems. It has been developed and become
more sophisticated and powerful to solve intriguing combinatorial problems regarding pack-
ings and edge-colorings of hypergraphs or multigraphs ([44, 23, 33, 36, 4, 5, 24]), chromatic
numbers of sparse graphs ([34, 30, 31, 64, 65]), Ramsey numbers ([35]), and some general
graph coloring problems ([43, 45]).

Rather than selecting one element at each step, DRC randomly and independently
chooses elements, not selected yet, with certain probability so that a bunch of elements
are chosen together. This is called a nibble. The size of a nibble is the number of chosen
elements or sometimes its expectation. Since the set of chosen elements may violate the
constrains, we take a subset of it satisfying the constrains. Elements of this subset are called
selected in the above meaning. Though the way constructing this subset varies depending
on problems and/or for the sake of simplicity, chosen elements contribute no conflicts with
previously and currently chosen ones are usually selected. We discard each unchosen element
that may cause any new conflict if it were added to chosen elements regardless what the
selected elements actually are. Since not all chosen elements are selected, some elements are
unnecessarily discarded but the set of remaining, i.e. non-discarded unchosen, elements is
defined with respect to randomly and independently chosen elements so that the structure
of the set might be well-understood. For the next step, corresponding new constrains are to
be imposed. (For the example of a complete arc, initial constrains are that no three points
are in a line. After choosing a bunch of points, we must add a new constraint that no two
points are in a line containing a selected point.)

If the size of a nibble is too big so that many of the chosen elements contribute at least
one conflict, then it would be hard to predict the structure of selected elements and/or too
many elements would unnecessarily be discarded. Thus the size needs to be small enough
that most chosen elements do not cause any conflict. Consequently, only few elements
would be unnecessarily discarded. For example, if we choose 0¢'/2 random points from
a plane of order ¢, a simple computation yields that each chosen point causes a conflict
with probability at most (g+1)(4) (6g=3/2)2 < 62. Thus as long as 6 is small enough, most
chosen points do not cause any conflict. In the case that each nibble is of size one, DRC
would exactly be RGC. In general, DRC is believed a good approximation of RGC as long
as nibble sizes are small enough.

How to nibble a good arc.  Our algorithm to construct a small complete arc of a
given plane works roughly as follows. Initially Qg and Sy both denote the set of all points
of the plane and Ay, which will be extended to the desired arc, is empty. Generally, €; is
essentially the set of points which are not covered by the secants of the current arc A;, and
S; is a subset of €;. At the i** step, we choose a random subset B; of S; by picking each
point in S; with the same probability p;, independently. Add an appropriate subset of B; to
A; so that the new set, say A;11, is still an arc. Now 2,41 is obtained from §2; by deleting
all the points covered by the secants of A;11. To obtain S;y1, we delete from S; not only



the points covered by the secants of A;;1, but a few more points, chosen randomly. The
purpose of this additional deletion is to keep certain structural properties of the S;’s.

We repeat the process until all but ¢'/21og®q points are covered by the secants of the
current arc (see Theorem 1.2).

The implementation of this idea, nevertheless, turns out to be technical. The detailed
algorithm follows in the next subsection.

2.2 The algorithm

Our input is a plane P of order ¢. Initially, o and Sy both consist of all points of the plane,
and A is empty. We will keep track of two running parameters a; and b; where ap = 0 and
bo = 1. In general a; = |A;]g~/? and b; is roughly |S;|/|So|. Set 6 = log~2gq.

Provided that after the first i steps, §2;, S; and A; have been constructed with points
covered by secants of A; in neither €2; nor S;, we execute the following three operations at
Step i+ 1:

Choose: Choose each point v in S; with probability p; = 6(b;g*/?)~!. Let B; be the set
of chosen points. A point z in B; is “good” if it does not cause any conflict in A; U B;, i.e.
no two other points of A;UB; are co-linear with it. Since no points of S; are covered by
secants of A;, x is good if and only if

e There are no y € B; and z € A; so that z,y,z are co-linear.

e There are no y,z € B; so that x,y,z are co-linear.
Let M; be the set of all “good” points and let the new arc be A;+1 = A;UM,;.

Delete: Delete from §; all the points covered by secants of A;41 or in B;. Since 2; has no
points covered by secants of A;, a point v in €2; is deleted if and only if one of the following
events occurs:

e v isin B;.

e There are x € M; and y € A; such that z,y,v are co-linear.

e There are x and y in M; such that z,y,v are co-linear.
Let D; be the set of all deleted points in this operation. For each v € €;, denote P;(v) =
Pr(v € D;) and let P and P! be the maximum and minimum over P;(v)’s, respectively (u
and [ stand for upper and lower bounds, respectively).

Compensate: To define S;; 1, we delete from S; all points in D; and independently remove
each point v in S; with probability

P (v) i= (P = Pi(v)) /(1= Py(v)).

7

Denote by C; the set of removed points. For the next step set
Qi+1 = Ql\Dl, Sz'+1 = SZ\(DZUCZ), Ai+1 = AiUMi,

and
air1 = [Aip1lg™V2, by = bi(1—PY) .

Throughout the paper, we say that after step ¢+ 1, a point v is surviving if v € S;11 and
undeleted if v € Q;11. Clearly, every surviving point is undeleted.



Stop: The algorithm stops after the completion of step N, where N is the first number
such that by < ¢=3/2 log®q, for some constant ¢ (later, we will set ¢ = 300).

When the algorithm halts, we obtain an arc Ay. To prove Theorem 1.2, we shall show
that this arc has ©(¢'/?log!/?¢) points and its secants cover all but O(¢/2log®q) points
of the plane. Due to the algorithm, the set of points uncovered by the secants of Ay is a
subset of Qn J(UN, B;\M;).

To achieve our goal, we need to analyze the algorithm in two phases, depending on
whether b; > ¢~ 'log® g or not, where ¢; is some other constant significantly smaller than
¢ (later we will set ¢; = 100). In each phase, we consider a number of parameters such as
the number of undeleted points on a line, the size of the current arc etc., and prove that
they behave essentially as their expectations predict. Technically speaking, we show that
these parameters are strongly concentrated around their means. This is the main task in
the proof and requires the new concentration result presented in Section 4. Once we could
take control all these parameters, the desired properties of Ay follows via an elementary
(but still not so obvious) calculation (see subsection 3.2 and 3.3).

The reader may notice that the algorithm follows closely the description of the dynamic
random construction method given in the previous subsection. The only new move is the
“Compensation” operation. It is clear from the algorithm that the probability that a point
is deleted depends on its (geometrical) situation. Therefore, the deleting probability P;(v)’s
are not necessarily the same for all v’s. On the other hand, our purpose is to make S;y1
a random-like subset of S;, so we want that each point in 5; has the same chance to stay
in S;y1, or each point in S; is thrown out with the same probability. The compensation
probability Pf°™(v) is introduced for this purpose.

2.3 Notation

Throughout the paper, [zyz] (sometimes [x,y,z] in order to avoid confusion caused by sub-
indices) will mean that the three points x,y,z are co-linear. This notion will be used in
summations, for instance, Zj7j/7[xjj/] tjtjr is summing the products ¢;t;’s over all pairs j, 5’
such that 7,7’ and z are co-linear. The unique line containing the two points x and y is
denoted by (zy). For each point v € Q;, A;(v) is the set of surviving points (excluding v

itself) in the lines connecting v with a point in A;. Formally,
A;(v) = {x € Si\v|Fu € A4;,[vau]} .

Initially, Ag(v) = 0 for all v. In general, for any set of points X = {vy,...,v1}, A;(X) =
Ai(v1, .. vg) = ﬁ?zlAi(vj). We may define the same things with respect to B;; B;(v) is
the set of surviving points on the lines connecting v with a point in B;. The set B;(X)
is similarly defined. Sometimes, we need to consider undeleted points instead of surviving
points (€2; instead of S;). We set

AL(v) = {z € Q\v|Fu € A;, [vau]} .

Next, we denote by T;(v) the set of (unordered) pairs of surviving points which are co-linear
with v. Formally,

Ti(v) = {{z,y}|z,y € Si\v,[vzy]} .
In the beginning, To(v) contains (¢+1)(4) pairs for all v.
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For a line [, S;(I) denotes the set of surviving points in [, i.e., S;(I) = S;NI. Whenever
S;i(1) is used, we assume that [ is not a secant (otherwise S(I) is empty). Furthermore,
we set Si(l,v) = S;i(l)NA;(v) and S;(l,u,v) = S;i(l)NA;(u)NA;(v) for a line | and any
two points u,v. Similarly, set Q;(1) = Q;NI, Qi(l,v) = Q)N AL(v) and Q;(l,u,v) =
Qi()NA(u)NAl(v).

For an event A, 14 denotes the characteristic indicator of A: 14 = 1 if A holds and 0
otherwise. All logarithms have the natural base.

3 MAIN LEMMA

In this section, we describe our main lemma and prove Theorem 1.2 modulo this lemma.
We start with the description of the main lemma. A patient reader will have a better under-
standing about the properties described in the main lemma, after reading the subsequent
subsections.

3.1 Main Lemma

Our main lemma asserts that with probability close to 1, certain properties hold at every
step of the algorithm. To analyze the algorithm, we need to split it into two phases,
depending on the size of 5;. In each step of Phase 1, we need to consider three primary
properties and seven secondary properties. In each step of Phase 2, we need to maintain
five properties.

Before presenting these properties, let us recall that 6 = log=2¢. Furthermore, let
b, = H;;B(l —le) Recall that 1 —P; is an upper bound on the probability that a point
from Q;_; remains in €, so b; can be interpreted as the upper bound for the chance that
a fix point in ¢ remains in ;. We set ¢ = 300, ¢; = 100. These parameters are far from
being best possible but we make no attempt to optimize them.

Phase 1. This phase consists of all steps where the parameter b;q of the input is at least
log® q (see the description of the algorithm). This roughly means that in this phase, each
line has at least log® ¢ surviving points (see Property (2)). We want the following three
primary and seven secondary properties hold for the outputs of any step in this phase.

Primary Properties.
(1) 6¢2(1—0(1)) < |M;| < 0¢*/?>(1+0(1)) and |B;| < 204"/
(2) bis1g(1—(i+1)log™ ) < [Sr1 (D] < bivrg(1+(i+1)log™ g)
(3) Qi1 (D] < b 1q(1+(i+1)log™ " q).

Secondary Properties
For all points u,w,v,z € €; and all lines I, where [NQ;11 # ()
(4) |Six1(Lv)] < 8(i+1)ais1bir1g"?+ (i+1)1ogq
(5) [Sia1(Luw,v)| < (i+1)loglq
(8) [Ase1 (u,0)] < (i Dbisrg-+(i+1)log™g
(7) |Aiz1(u,v,w)| < ibiy1g™? 4 (i+1)1og™q
(8) |Ai+1(u,v,w,z)| < (i+1)10g6q
(9) [Q41(L,0)] < 8(i+Dazs1b g%+ (i41)log™ g
(10) |41 (1, u,v)| < (i+1)log*q.



Taking into account the relations

Tl = (P9, il - (50011

veEl I=(av),a

|Sis1] = Z|Sz+1 )N/ (a+1), |Qz+1|—Z| i1 ( \/ q+1)

Property (2) implies the following four properties (11) 3% ,¢%(1—3(i+1)log™¥¢q) <
| Ti1(v)] < 3b7,16*(1+3(i+1)log™q) .
(12) aiy1bir1g®?(1-2(i+1)1og ™% q) < [Aj1a (v )| < az+1bl+1q3/2(1+2(i+1)10g_13q)
(13) (1-1og™"q)" *bit14® < [Sisa| < (1+log™ " q) " biga
(14) [Qig1] < (1+1og™ ") ¢%0], ;.

In the second phase, we want to keep these four properties (with a somewhat different
error terms for (12)) together with Property (1).

Phase 2. In this phase, we consider all steps i+ 1 whose input satisfies

g ?logtq < b; < ¢ 'log q.

By Property (2) of the first phase, the second phase starts when each line has roughly
log® gq. The properties we are interested in are

(1) 0¢'/2(1—0(1)) < |M;| < 6¢/? and |B;| < 29q1/2

(2) 3b7,16*(1=3(i+1)log™"? q)) < [Ti41(v)] < 567,10 (1+3(i+1)log™ " q)

(3) az+1bz+1q3/2(1—0(i92)) < |Ais1(0)] < ais1bi1g®?(1+0(i6%))

(4) (1-log™ )" bis19® < [Sip1| < (1+1log™ ' )" bij14?

(5) Q41| < (1+1log™ 0 q)" 1 ¢%0],
for all points v € ;4.

We say that our algorithm runs perfectly up to a step j if the required properties hold
for the outputs of steps 1,2,...,5. If all properties hold at every step in both phases, we
say that the algorithm runs entirely perfectly .

The following remark may give the reader a better understanding of the above properties.
Remark.

e Before the (i4 1) step, S; has roughly b;q> points. In this step, each point from S;
is selected into B; with probability p; = 0(b;g*/?)™", therefore B; has roughly 8¢'/? points.
Most of the points of B; remain in M; as the number of points causing conflicts is small.
Thus, one can expect M; also to have around 6¢'/? points. This is quantified in the fist
property of both phases.

e The main terms in the left and right hand sides of Property (2) of Phase 1 and
Properties (2-4) of Phase 2 are exactly the expectations of the corresponding quantities.
Thus, these properties state that the quantities in question are strongly concentrated around
their means.

e As the reader will see in the next subsections, the proof of Theorem 1.2 (assuming
the Main Lemma) does not require all properties, but only few of them. For instance, none
of the secondary properties will be used. However, the primary properties, by themselves,
cannot be proved using induction. The secondary properties are thus introduced so that



together with the primary properties they form a sufficiently strong induction hypothesis
which we are able to prove. The reader will have a clearer picture about this point and the
relation between the properties after reading the next two subsections, especially Remark
3.10.

Lemma 3.1 (Main Lemma) Our algorithm runs entirely perfectly with probability close to
1.

In the next two subsections, we show that if the algorithm runs entirely perfectly, then
the final arc Ay satisfies the statement of Theorem 1.2.

3.2 Some other lemmas

In this subsection, we present some estimates which are needed in the proof of Theorem 1.2.
The key fact we want to deduce is the following: If the algorithm runs entirely perfectly,
then the gap P — P} is sufficiently small at every step. As |Qo| Hﬁ\ial(l — P!) is (essentially)
an upper bound for |Qy| and |QO|HZ-AL_01(1—PZ<“) is (essentially) a lower bound for |Sy/,
appropriate bounds on P — P!s imply that [Qy|/|Sx| = O(1). On the other hand, by the
description of the stopping time and Property (4) of the second phase, [Sxy| = O(¢'/?1og¢q).
So, this way we can obtain the desired bound O(q'/?log®q) for |Qx/.

The first two lemmas provide a upper bound on P and a lower bound on Pl-l, respec-
tively. These bounds also explain the necessity of the estimates on |A;(v)| and |T;(v)]| in
the main lemma.

Lemma 3.2 We have
P}t < pi-+p;max|A;(v)| +pf max |T;(v)],
where the maximum is taken over the set §;.
Proof. By the description of M; and the deletion operation, it is clear that for all v € €);:
P;(v) < Pr(v € B;)+Pr(B;NA;(v) # )+ Pr(3l containing v s.t.|B; N (I\v)| > 2).

Let Py, P», P3 denote the first, second and third terms of the right hand side, respectively.
It is obvious that P; < p; (the strict inequality is possible as v may not be in S;). To show
P, < p;max|A;(v)|, consider

Py

1—P’I“(BZ' ﬂAi(’U) = @)
1= (1—p)™™
1—(1—pi|Ai(v)])
pilAi(v)].

IN

To bound Pj, note that

Nv
Py SP%ZC \2 |> < p} max|Ti(v))-

vEl

This completes the proof. O
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Lemma 3.3 We have
P!> pimin |A;(v)| ~ 297 max| Ay(v) P — pf max | Ai(v) | max Ty ()
where the mazimum and minimum are taken over the set §;.
Proof. Notice that
Pi(v) > Pr(M;NA;(v) #0) = 1—Pr(M;NA;(v) =0).
In order to upper bound Pr(M;NA;(v) = 0), consider

Pr(M;NnA;(v) = @) = Pr(B;nA;(v) = @)—{—PT({BiﬂAi(U) #+ @}/\{MZQAZ(U) = Q)})
= Py+PFs,

where P, and Ps5 are, respectively, the first and second terms of the right hand side. Re-
peating the computation in the previous proof we have

i Az v
Py = (1—p) M < 1_pi|Ai(U)|+p12<’ 2< )‘>

A;
< 1—p;min |Ai(v)]+p?max <| 2(U)|> ,
and

P < Y Pr({we Bi}nr{z ¢ M})

z€A;(v)
|A;(v)] nza%()Pr({x € Bi} N {z ¢ M;})
xeA;(v

IN

< i)l max (Pr(BiﬁAi(x) £ 0) + Pr(3 containing z s.t. |B;N (I\z)| > 2))

. . 1A 2\
< 1Aw)lpe mas (pil i)+ Ti(2)])

S iv)
Lemma 3.3 now follows from the bounds of Py and Ps5. The constant 2 can be replaced by

3/2 but we do not bother. O

Remark 3.4 It will be useful to keep in mind the following asymptotics (under the assump-
tion that the algorithm runs perfectly up to the it" step).

pl’Az(U” ~ H(biq3/2)_1aibiq3/2:9ai~i92
pi|Ai(U)‘2 ~ ’i2(95
1 1,
PlA@IT@)] ~ 6% ~ i’
1
PITi(v)| ~ 0%

Here A ~ B means A/B is almost one. Usually, we only need 0.9 < A/B < 1.1 for the
computation. In the first asymptotic we used p; = O(biq:g/z)*l.

11



The next lemma gives an estimate on the running time IV, assuming that the algorithm
runs entirely perfectly .

Lemma 3.5 If the algorithm runs entirely perfectly , then the running time N = ©(6~! logl/2 q).

Proof. By the definition of N the following holds:

N-1 N-2

[[-PY) =ty <q ¥ logq<by_1= [ (1-P").
i=0 i=0

Now assume, for contradiction, that N > L = 100*110g1/ 2¢ (we can assume L is integer,
for the sake of convenience). It follows that

br, > by_1 > q % *log®q. (1)
On the other hand,
L-1 L-1
bp=[[a-pPH<J[a-P).
i=1 i=1

Taking logarithmic, it follows from (1) that

L—1
3
~(5 +o(1)logg < Y _log(1~F)).
i=1

To estimate the right hand side we use Lemma 3.3. It is clear that if the algorithm runs
entirely perfectly, then the term p;|A;(v)| in the lower bound of P! (in Lemma 3.3) is the
dominating one. Since i < L, i#?> = o(1) (recall that § = log~2q). Thus P! > 116 by
Remark 3.4, and we have

1

1
log(1—P}) < log(l—izﬂ?) < —?02.
This implies
L—1 1Lt 1
log(1—P)) < —=) 6> < ——L%0? < -21
; Og( 1,) — 421 — 10 — qu7

a contradiction. Therefore, N < L = 106~} logl/zq.

Using a similar argument together with the estimate on P}, we can show that N >
%0‘1log1/2q and this finishes the proof. O

Remark 3.6 The lower bound on N is not so crucial as we do not need a lower bound
on the size of the arc in Theorem 1.1. On the other hand, this bound helps us to derive
Corollary 1.3.

It follows directly from the previous lemma and the bound on |M;| (Properties (1) in
both phases) that

Corollary 3.7 If the algorithm runs entirely perfectly , then |Ayx| = ©(¢"/?log"/? ).

12



Now we are ready to deduce the key fact that P — P! is sufficiently small for all i.

)

Lemma 3.8 If the algorithm runs entirely perfectly, then for every i
P}~ P} = O(6*logq).
Proof. Lemmas 3.2 and 3.3 imply:

P—F! < pi(1+max| 4i(v)] — min| Ai(v)]) + p? max|T;(v)]

+ 2p?m3x|Ai(v)|2+p§m51x|Ai(v)|m3x|ﬂ-(v)|. (2)

Recall that p; = 0(b;¢*/?)~!. Using the estimate of |T;(v)| in the main lemma, |T}j(v)| ~
$b2q3, we have that p?max, |T;(v)] = O(6%). Next, using |4;(v)| ~ aibig*/?, we have
PP max, | A;(v)|max, |Ti(v)| = O(a;6°) = o(h?logq), as a; = O(log'/?q) by Corollary 3.7
(recall that a; = |A4;|/¢"/? < |An]|/q"/?). Moreover, p? max, |4;(v)]? ~ a26% = O(6?logq).
Thus, it remains to show that p;(max, |4;(v)| —min,|A;(v)|) = O(#*logq).

Due to the estimates in the main lemma, the quantity p;(max, |A4;(v)| —min, |4;(v)]
larger when we are in the second phase (in this phase the error term concerning |A4;(v)
larger than in the first phase). In the second phase, due to property (3),

1S

) is
|

(max |4;(v)| —min|4;(v)]) = O(i6%a;big>?).

As p; = 0(big*/?)~1, we have

pi(max|A;(v)] —min|A;(v)]) = O(ia:t?). 3)

On the other hand, a; < ay = O(log'/?¢) and i < N = O(0~1)log'/?q. These, together
with (3), imply the lemma. O

3.3 Proof of Theorem 1.2 via the Main Lemma

We shows that if the algorithm runs entirely perfectly, then the output satisfies the fol-
lowing three estimates: |Ay| = O(¢"/2log!?q), || = O(¢"/21og®q), and (UM, BA\M;| =
O(ql/ 2logq). As noted in subsection 3.1, the set of uncovered points at the end of the
algorithm is a subset of QU (Ui]\il Bi\Mi), so these estimates imply the theorem.

The first estimate has already been derived in Corollary 3.7. To prove the second
estimate, note that by the definition of the stopping time and Property (4) of the second
phase, |Sy| < ¢'/?1log®q. Thus, it is sufficient to show that [Qx|/|Sy| = O(1). In fact, more
will be true, namely, |Qx|/|Sn| = 1+0(1). To see this, first observe that by Property (14)
of the first phase and Property (5) of the second phase,

N-1

| < (L+1og ™09 Mbye? = (1+0(1)bye® = (1+o(1)) [T (1-P)e*.
=0

On the other hand, |Sx| = (1+0(1))bng® = (14+0(1)) [TV4" (1 — P*)¢?. Therefore

13



N-—1 - l N—-1 _ l
o5l = (1+o) (M= U = o) (TT {1 ) 0
1=0 v

On the other hand, due to Lemma 3.8

1-P!
1-pr

log = O(P!' = P}) = O(6*logq).

To conclude, recall §# = log™2 ¢ and by Lemma 3.5 N = ©(§~! logl/2 q), SO

logM = O(N#%logq) = o(1),
SN
proving our claim.
The last estimate is a trivial consequence of the upper bound on N and the upper bound
on |B;| provided in the second half of Property (1) in both phases (see subsection 3.1). This
completes our proof. O

Remark 3.9 We will use the following (under the hypothesis that the algorithm runs per-
fectly up to the ith step) frequently in later proofs

ai) ~ 6% < N6? = 0(log'/?¢b) = o(1)
a; ~ i0=0(log'?q) = o(logq).

Notice that if the algorithm runs perfectly up to the it" step then P!" = o(1). On the
other hand, bi11 = bj(1—P*). So under the above assumption b1 ~ b; > 0.9b;.

Remark 3.10 We have seen that the quantities |A;(v)|,|T;(v)|,|M;|,|Si| and || are di-
rectly involved in the proof of Theorem 1.2 above. This explains the necessity of controlling
these quantities in Main Lemma. In order to control |A;(v)|,|T;(v)| and |S;(v)| in the first
phase, it is sufficient to control |S;(l)| for all I (Property (2)). The later is possible since
in this phase |S;(l)| is sufficiently large (|S;(1)| > log® q) which enables us to show that
|Si(L)|’s (as random wvariables) are strongly concentrated. Properties (4) and (5) of Phase
1 were introduced in order to help us to control |S;(l)| (see the first paragraph of subsection
5.1). In the second phase, |S;(l)| can be very small and strong concentration no longer holds.
Therefore, we need to consider |A;(v)|,|Ti(v)| and |Si(v)| directly. In order to control | A;(v)|
in this phase, we have to prepare in the first phase by introducing Property (6). Properties
(7) and (8) were introduced to help us to prove (6). Finally, similar to the situation with
|Si|, in order to control |S;| in the first phase, it is sufficient to control |Q;(1)| (Property
(3)) and Properties (9) and (10) were introduced to make this possible).

4 CONCENTRATION

The heart of many proofs using the probabilistic method is to show that certain random
variables are strongly concentrated around their means. To carry out such a task, one
frequently uses a concentration (i.e., large deviation) result from probability theory, such
as Csernoff’s, Azuma’s or Talagrand’s inequalities (see [3] for many examples).
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While concentration is also the main issue in our proof, none of the existed tools seems
to be sufficiently strong to prove the properties in the main lemma. The following two
paragraphs are intended to give the reader some idea about the main obstacle in our situ-
ation. Many known results have been developed for smooth functions, i.e., functions where
each individual atom random variable has relatively small effect (or in other words, the
Lipschitz coefficient is small). To be more concrete, let Y be a function depending on n
variables t1,...,t,, where the ¢;’s are independent binary random variables. The (discrete)
Lipschitz coefficient of Y is the smallest number r such that whenever two n-dimensional
binary vectors ¢ and ¢’ differ at only one coordinate, |Y(¢) =Y (¢')| < r. If r is sufficiently
small, compared to n and the mean of Y, then Y is strongly concentrated with variance of
order at most r2n. A typical example is Theorems 7.2.1 of [3], which is a variant of Azuma’s
inequality. This theorem is, perhaps, one of the most commonly used concentration results
in probabilistic combinatorics.

Unfortunately, small Lipschitz coefficient is something we cannot afford in our situation.
To illustrate this, let us consider the quantity |M;i|. (See the first property in Phase 1,
subsection 3.1.) To each point =z € Sy, let t, = 1 if x is chosen in B; and 0 otherwise.
Thus, |M;| is a random variable depending on the ¢,’s, x € Sy. We show that the Lipschitz
coefficient of M; can be as large as €2(g) in the worst case. To see this, assume our plane
is the Galois plane PG(2,q) and let C be the conic zy = 22 in it. It is well-known ( and
easy to see) that C is an arc. For a point v € S; let l1,...,l;41 be the lines through it;
about half of these lines intersect C in exactly two points. We denote these pair of points
by (z1,y1),...,(K,yx) where K =~ ¢/2. Imagine that in the “Choose” operation we have
considered all points but v and among the considered points, we have chosen all z;,y;
(¢ = 1,...,K) and nothing else. Then the choice of v has a huge effect on [M;|. If v is
chosen, then it spoils the whole configuration and thus |M;| = 0; if v is not chosen then
My ={z1,y1,...,2K,yx } and |M;] = q.

Roughly speaking, this kind of obstacle may be overcome when the sum of squares of
Lipschitz coefficients are not too large. Kahn [33] showed that if all Lipschitz coefficients are
not too large, then a strong concentration hold with variance essentially at most the sum
instead of r2n (the square of the maximum Lipschitz coefficient multiplied by the number
of basic random variables). Alon, Kim and Spencer [5] considered similar cases in slightly
different point view and found a so-called dynamic version of Kahn’s result, which may also
be regarded as a handy version. They applied it to find an almost optimal matching in a
simple hypergraph, in particular to improve Brouwer’s lower bound [12] for the size of a
largest packing in a Steiner triple system. Grable [24] found a nice handy version too and
applied it to find an almost optimal matching for a hypergraph with certain conditions.
It was Kahn and the first author (see [34]) who considered the case that the maximum
coefficient is too large but all coefficients are still small enough if one excludes a bad event,
usually, of small probability. They showed that the over all maximum in Azuma’s bound
can be replaced by the maximum over only the complement of the bad event, which is
called an essential maximum, as long as we add the probability of the bad event in the final
concentration inequality. (See Lemma 4.1 for more details.)

In this paper, two new concentration inequalities are presented. The first one will
cover both of the two cases mentioned above. It roughly says that upper bounds for the
maximum and the sum excluding a bad event may replace the over all maximum multiplied
by the number of basic random variables. Notice that the maximum Lipschitz coefficient in
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Azuma’s inequality may be regarded as the maximum over the supremum, or /.-, norms
of all first order derivatives. The second inequality basically states that if all higher order
derivatives are included, then their expectations, or l;-norms, give enough information to
obtain a concentration inequality which is almost as strong as Azuma’s inequality. We
believe that the method developed based on these concentration results is very systematic
and robust. It has turned out later that this method can be applied to analyze the nibble
process in several other problems in a convenient way, leading to notable improvements (see
[61, 65]). For instance, [61] contains an extension of above mentioned Alon-Kim-Spencer’s
and Grable’s results on matching of hypergraphs. Several variants of these concentration
results are proved in consequent papers [60, 63] and applications have been found in diverse
areas, ranging from additive number theory [62] to random graphs [37, 38, 66]. The reader
who is interested can find a comprehensive account about these developments in a recent
survey [60].

In the first two subsections of this section, we present our concentration results (Lemma
4.1 and Lemma 4.2). The proofs of these lemmas appeared in a separate paper [37], which
was originally intended as an appendix to this paper.

4.1 Martingale

In this subsection we consider a probability space generated by n independent binary ran-
dom variables t1,...,t,, equipped with the product measure. To this end, p; denotes the
expectation of t;. The asymptotic notation is used under the assumption that n — oo.

Let Y be a function depending on ti,...,t,. For any vector v = (t1,...,t,) and any
1 < i < n, define C;(v) as follows. First let (1) and v(®) be the vector obtained from v by
setting its 3" coordinate to 1 and 0, respectively, and

Ci(v) = ’E(Y(v(l))—Y(v(o))]tl,...,ti_1> ]

We call C;(v) the (conditioned) average effect of the random variable ¢; when ¢1,..,t;_1 are
given. By definition, C; depends on t1,..,t;_1 and p;»s, j > i. The corresponding (condi-
tioned) variance bound piC'i2 also plays an important role. The variance bound is exactly the
variance of the random variable X which attains two values 0 and C; with Pr[X = C;| = p;.
As mentioned earlier, we cannot apply a classical Azuma type concentration inequality. To
overcome this obstacle, a bad event of small probability must be excluded. As we want that
all average effect C;(v) and the sum of the variance bounds are small enough, define a bad
event with respect C and V

By = By(C,V) = {v\m?XCi(v) > Cor ZpiCiQ(v) >V} (5)

It is sometimes convenient to consider

By =B:(C,V) = {v/maxC;(v) = Cor > piCi(v) > V/C}.

For 3. p;C?(v) < max; C(v) Y, piCi(v), we have By C B.
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Lemma 4.1 For any positive numbers \,C and V satisfying 0 < A < V/C2,
Pr(\Y—E(Y)] > (AV)W) < 2¢~M4 4 Pr(By).

In particular,
Pr<|Y—]E(Y)] > (AV)l/Q) < 244 Pr(By).

In order to apply this lemma, in subsection 4.3 and 4.4 we shall show how to define the
decisive parameters C and V for our situation. For an application of Lemma 4.1 in the
theorem of random graphs, we refer to [66]. Variants of this lemma can be found in [60, 38]
along with more comprehensive discussion.

4.2 Concentration of polynomials

Let H be a hypergraph with the vertex set V(H) = {1,2,...,n}. We allow H to have an
empty edge. To this end £(H) denotes the edge set of H. Each edge e has some at most k
vertices. Furthermore, we assign to each e a positive weight w(e). Suppose t;, i = 1,,2...,n
are independent random variables, where ¢; is either a binary random variable with expected
value p; or t; = p; with probability 1. We consider the following function

Yy = Z w(e)l_ItS

ecE(H) s€e

We call H the supporting hypergraph of Y = Yp;. Notice that Y is a polynomial of degree
at most k. If e is the empty set, then we set [] . ts = 1.
Example. If V(H) = {1,2,3} and £(H) = {{1,2},{3},0} with weights 2,0.2, 1, respectively
then:

Yy = 2t1t0+0.2t3+1

Truncated subhypergraphs. For each (non-empty) subset A of V(H), Ha (the A-
truncated subhypergraph of H) is defined as follows:

V(Ha) = V(H)\A.

S(HA) = {B C V(HA),BUA S g(H)

If Be E(Hga) then w(B) =w(BUA).
Now let E;(Y) = max v (m),)a=i E(Ya,); by definition Eq(Y') is the expectation E(Y) of
Y. Intuitively, E;(Y) can be interpreted as the expected effect of a group of i random
variables. Furthermore, set £ = max;>0E;(Y) and E' = max;>1 E;(Y).

Lemma 4.2 There exist positive numbers ci,di depending only on k so that for any positive
number \
Pr(\y ~E(Y)| > ck(EE’)l/z)\k) < dyexp(—\+klogn)

Corollary 4.3 Assume that k < 5. Under the assumptions of Lemma 4.2, we have

Pr(]Y—IE(Y)| > (EE')/?10gh+! n) = exp(—w(logn)),
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meaning
1ogP7~(yY—E(Y)\ > (EE")/? longrln)

— OO7
logn

as n — O0.

Lemma 4.2 implies that if Eg(Y") is much larger than max;~oE;(Y), then Y concentrates very
strongly around its expected value. For instance, assume that £ is a constant and n — oo
and Eo(Y) = E > E'log?**'n. In this case, we can choose A = log' /3% n = w(logn)
so that the tail cy(FE")Y2\F = o(E) = o(E(Y)) and the bound djexp(—\+klogn) =
exp(—w(logn)).

The strength of Lemma 4.2 relies on the fact that we need to consider only the expected
effects E;(Y") instead of the worst-case effect, which is usually much larger. Thus, Lemma
4.2 can be used in several situation where classical tools such as Azuma’s inequality fails.
For a more comprehensive discussion about Lemma 4.2, we refer to [37] or [60].

It is clear from Corollary 4.3 that if k¥ < 5 and E;’s are bounded by a constant for all
i > 0, then with very high probability Y is O(log"!n).

We apply Lemma 4.2 and its corollary in the following way. Given a function Y, we
first approximate it with a low degree polynomial Y’ and next apply our results to show
that Y’ is concentrated. If the approximation is sufficiently fine, this would imply that ¥
itself is strongly concentrated. In the case we need only show that with high probability
Y is upper (lower) bounded by some number, then it is sufficient to find a polynomial Y’
which bounds Y from above (below). This method, which we call the polynomial method,
will be used throughout Section 5.

4.3 Bounding the effects

In the following, we consider a generic step i, where the inputs are €2;,5; and A;. Set
n = |S;| and index the points in €; by 1,2

There are two sources of randomness in a step. One is the “Choose” operation, the
other is the “Compensation” operation. To this end, ¢; is the indicator of the event that
the point j is chosen in the “Choose” operation, and u; is the indicator of the event that j
is deleted by “Compensation”. Together, we have 2n independent binary random variables;
the t;’s are i.i.d., but the u;’s are independent but not necessarily identically distributed.
The order of random variables is t1,...,tn, th4e1 = U1,...,t2n, = U,. As an order does not
particularly plays an important role here, we just choose a convenient one. (The order is
sometimes important in other applications, see e.g., [34].)

For a set L C S; with |L| > log!'?¢, let L’ be the set of its remaining vertices after the
step i, namely, L' = LNS; 1. Typically, we want to show that

Pr(||L'| =E(IL])] = T) < exp(—w(logq)),

for some appropriate error term 7'. As already discussed, the ¢;’s can have huge effect on
L'. On the other hand, w; is of effect at most 1 and no effect if j ¢ L. Thus in the sum
of variance bounds in By(C, V) (see (5)) the effects of u;’s contribute at most |L|. We will
take C > 1,V > 2|L| so that

Bo(C,V) C B =B(C,V) := {v| max Cj( >CorZE >V/2C} (6)

=1,...,n

18



We now want to find the parameters C > 1 and V > 2|L| such that

Pr(B) = exp(—w(logq)).

As the sub-index 7 is fixed, we do not explicitly write it in the rest of this subsection. In
other words, A,S,Q stand for A;,S;,€);, respectively. We also assume that the algorithm
runs perfectly up to step i —1. The argument below will hold for any fixed u;’s.
For any point j, let
A(L,j) = {t € LI(t/)NA £ 0},

and a(L) = max { maxjeq |A(L,j)], L] 1og—100q}.
Lemma 4.4 With very high probability, the effect Ci(v) is o(logq)a(L) for every k.

Lemma 4.5 With very high probability

n

> pCi(v) = o(logg)|L|.

k=1

The above two lemmas particularly imply that we can set C = a(L)logg > 1 and V =
a(L)|L|log*q > |L|. (See Lemma 4.7.) Before presenting the proofs of these lemmas, let us
give some intuition why the quantity a(L) is relevant. Suppose that by switching ¢ from 1
to 0, j is dropped out of the arc. Then all the point g € L, which are deleted by a secant
through j and a point from the current arc A now have a chance to survive. The number
of these points is at most a(L).

The technicality here is that beside the above mentioned situation, many other situations
can occur. We consider these situations below. By adding a loggq factor, we can handle all
these situations in a relatively simple manner.

Proof of Lemma 4.4. Suppose that we switch ¢; from 1 to 0. Let Hj denote the influence
of this switch on |L’|, where all other ¢;’s are fixed. Trivially, H; < o+ 3, where « is the
number of new points L’ receives, and (3 is the number of new deleted points from L caused
by the switch. It is important to keep in mind that C} is a random variable depending on

t1,.. 3 lp—1-
Denote by o(k) the sigma-algebra generated by t¢1,..,tx. We have

Cp = ‘E(Hk\a(k—l))’. (7)
On the other hand,

Hy, <> Hilg), (8)

geL

where H(g) = 1 if by switching ¢; the inclusion relation between g and L’ is changed and 0
otherwise. Observe that the only reason L’ is changed is that the new arc A’ (recall that A
stands for A; and A’ stands for A;;1) is modified due to the t; switch. Due to this switch,
A’ may gain a few more points; moreover, the only point it can possibly lose is k itself. Let
us consider the effect of these events on L.
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(a) The arc A’ gets a few new points, so more points will be deleted from L’. Suppose
g € L is such a point (g was not deleted when t; = 1, but becomes deleted when ¢; switches
to 0). To make this possible one of the following situations must occur.

(I) There are a point j and a,b € A such that t; = 1, [gaj] and [jkb] hold. (In this case the
following can happen: By switching ¢, 7 can be included in A’ and this deletes g as g,
and a are co-linear. The reasoning for (II-VI) is similar)

(IT) There are a € A and j,j’ such that t; = t;; = 1 and [ajg] and [j;'k] hold.

(IIT) There are j,j" such that t; =t =1 and [g,7,j'] hold and the line (jk) intersects A.
(IV) There are j,5',j" such that t; =t; = t;» =1 and [gjj'] and [j5”k] hold.

(b) By changing t; the new arc A’ loses a point. This occurs if and only if the point k
itself was in A’. In this case, L' could get few additional points. If g is such a point, then
g was deleted when ¢, = 1, and g survives when t; = 0. This could only happen if one of
the following situations take place.

(V) There is a point j € A; such that [gjk] holds.
(VI) There is a point j such that t; = 1 and [gjk] holds.

We next split > Hy(g) into the sum of six terms Hy(I) through Hy(VI) corresponding to
the six situations. (Since we only need to bound Hj, from above, we can ignore the overlaps
between the cases.) First let us bound Hj(I). Observe that

Hi(I) < thl{jeA(k)}Zl{jeA(g)}
J#k 9eL
< Y LI
JEA(K)

Setting Cx(I) in a similar way (by splitting C}, into six terms). We have
G SE(H(Dlok-1)) < Y AL+ X plALL ()
JEA(K),j<k JEA(K),j>k
The second term on the right hand side is O(1) since
> P < a(L)plAK)],
JEA(K),j>k

where A(k) = A;(k) is defined as in subsection 2.3. As we assume that the algorithm
runs perfectly up to the current stage, we have |A(k)| = |A;(k)| ~ a;big®/? and p = p; =
0(big*/?)~" (see Remark 3.4). Thus

a(L)p|A(k)| < 2a;6a(L) = o(a(L)).

Now consider the first term in the right hand side (9), which is a sum of independent
random variables. Since the expectation of ZjeA(k),j>ktj is at most a;0 = o(1), with very
high probability this sum is o(logq). Consequently, with very high probability:

Ci(I) = o(logg)a(L). (10)

The remaining cases (II), (III), (IV) can be handled similarly and we omit the details.
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For situation (V), it is clear that the number of such a points g is at most max; A(L, j) <
a(L).

To complete the proof, let us now consider situation (VI). By a reasoning similar to the
one used for (I), we have

C(VD) <) ) ;=Y

teL j,[jkt]

Suppose that we are in the first phase of the algorithm; since we assume that the
algorithm runs perfectly up to the current stage, every line through j or k has less than
2b;q points. Thus E(Y) < |L|(2b;q)p; < |L|g'/? < |L|log=192¢, given that ¢ is sufficiently
large. Since Y is a sum of independent random variables, it is easy to show (using Csernoft’s
bound or Lemma 4.2) that with very probability Y < |L|log !¢ < a(L).

Now suppose that we are in the second phase. In this case, we need to use the property
that every line has at most 2log® ¢ points (this is a corollary of Property (2) in the first
phase and the definition of the second phase). Given this, E(Y) < 2|L|p;log®* q. On the
other hand, p; = 9(b1q3/2)_1 < log™“q by the description of the algorithm. Therefore,
E(Y) < |L|log®¢q < |L|log~'*?¢q (remember that in subsection 3.1 we set ¢ = 300 and
¢1 = 100). Again by Csernoff’s bound or Lemma 4.2, we can conclude that with very high
probability, Y < |L|log 1% ¢ < a(L). O

Proof of Lemma 4.5 Again split Cj into the sum of six terms Cy(I) — Cy (V). Consider

PG <Y (D HlACG+ Y plATL)).
k=1

k=1 jeA(k)j<k J€A(k),j>k

Now let us split the right hand side into a constant and a sum of random variables. The
constant is:

IN

> AL PPy ALk = j € A(R))|

k=1jcA(k),j>k Jj=1

= P*) AL )IIAG)]

Jj=1

< pPmaxAG) Y JA(L)
j=1

= pPmax|AG)| YA
teL
[Llp*(max| AG)

IN

Recall that at step 4, pmax;|A(j)| ~ a;60 = o(1). Thus the last formula is o(|L|). We now
show that the other term which is the sum of many random variables could be bound (with
very high probability) by o(logq)|L|. The sum in question is

Py Y HlIALI), (11)

k=1jEA(k),j<k
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which can be upper bounded by,
pmax| AG)| 3t A(L ).
j=1

The expectation of > ", t;|A(L,j)| is pd_i_y [A(L,j)| = p>_,er [A(G)]- As already shown,
the last quantity is at most p|L|maxcr|A(t)] = o(|L|). Given this, it is easy to prove
that with very high probability >°%_, t;|A(L,j)| is O(logq/a;0)|L| since |A(L,j)| < |L|.
Therefore, with very high probability (11) is at most pmax; |A(5)|O(logq)|L| = o(logq)|L|,
since pmax; |A(j)| = o(1). The proofs regarding the remaining cases (II-VI) are similar and
omitted. g

Remark 4.6 e In this and the previous subsection, we assume, for the sake of simplicity,
that L C S. On the other hand, all statements also hold for L C Q. For the analysis of the
previous subsection, the points in L\S could only help, as the “Compensation” operation
does not act on them. In this subsection, we never use the fact that L C S.

e The proofs of Lemmas 4.4 and 4.5 also hold for a multi-set L, where some points
t € L might have multiplicity larger than 1. To see this, note that in all summations over
t € L, the fact that t are different is not essential. Of course, when we use these Lemmas
for multi-set, A(L,j) should also be defined with multiplicities.

4.4 Consequences

Lemma 4.7 Fix a (multi-)set L in Q. Then with very high probability
L'~ E(L)| < a(L)*|L|"*1og’ .
Proof. Set C = a(L)logq, V = a(L)|L|log*q and X = log®?¢. By Lemma 4.1,
Pr(|E' = B(L))| = (\V)/2) < exp(—w(logq)) + Pr(B),

with B defined with respect to C and V as in subsection 4.1. Note that (A\V)/2 =
o(a(L)?|L|*/?10g® q) with room to spare. On the other hand, by Lemmas 4.4 and 4.5,

Pr(B) = exp(—w(logq)),
completing the proof. O

The following corollary is immediate.

Corollary 4.8 Let K be a fized positive constant. For any set L satisfying a(L) < 2!#'%,

— log
we have with very high probability that |L' — E(L')| < |L|log™ ¥ .
In the proof of the main lemma, we frequently need to prove a statement of the follow-

ing form “with very high probability |L — E(L)| < |L|log~®¢”, where d is properly chosen
constant (notice that all the relative error terms in the properties of the main lemma is of the
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form log =9 ¢ for some d). Consider the quantity a(L) = max { max;eq, |A(L,j)|,|L|log™% q}.

It is clear that if a(L) = |L|log "¢, then Lemma 4.7 or Corollary 4.8 immediately prove
the statement described above (in all applications, d will be much smaller than 100, so the
constant 100 in the exponent provides plenty of room). Therefore, we have to focus only on
the case a(L) = maxjecq, |A(L,j)| and we will assume that this is the case in all applications
of Lemma 4.7 and Corollary 4.8.

5 PROOF OF THE MAIN LEMMA

In this proof, we consider a generic step ¢, assuming that the algorithm runs perfectly in
the first ¢ —1 steps (for ¢ = 1, this assumption holds trivially); we sometime refer to this
assumption as the induction hypothesis. We shall show that each of the properties holds
for i4+1 with very high probability. Since the number of properties (taking into account all
possible choices for I, u,v,w,z) is O(¢q'?), it follows that all properties hold simultaneously
with very high probability.

5.1 Phase one

The ten properties of Phase one split into four groups: (1), (2)(4)(5), (3)(9)(10), and
(6)(7)(8). The strategy for the last three groups is similar. First, we prove the highest
indexed properties ((5), (10), (8), respectively), using the polynomial method discussed
in subsection 4.2. Next, we prove the middle properties ((4), (9), (7), respectively), using
Lemma 4.7 and again the polynomial method. The reason we need to prove (5), (10), (8)
first is that the quantities considered in these properties play the role of a(L) (see Lemma
4.7) with respect to the quantities considered in (4), (9), (7), respectively. Similarly, the
quantities in (4), (9), (7) play the role of a(L) with respect to the quantities in (2), (3),
(6), respectively. Thus, we can again use Lemma 4.7 to prove (2), (3) and (6). The proof
of (1) is based entirely on the polynomial method.

Property (6) is not primary, but it plays an essential role in the analysis of the second
phase.

5.1.1 Proof of (1)

Set U; = B;\M;. Tt suffices to show that with very high probability |B;| < (14 0(1))8q'/?
and |U;| = o(1)8¢"/?. The first inequality is easy by Csernoff bound, as B; is the sum of
i.i.d random variables and E(B;) = 0¢'/? > log? ¢ (one can also use Lemma 4.2). To prove
the second inequality, we apply the polynomial method, discussed in the last paragraph of
subsection 4.2. To apply this method, we first bound |U;| by a low degree polynomial as
follows. Notice for any point j in U;, j should be chosen (that is, t; = 1) but j is not in M;.
The later has two possible reasons. The first is that there is a point j° € B; such that (jj’)
intersect A;, i.e, D ;e 4yt = 0. The second is that there are two points j" and j” in B;
such that 7,5’ and j” are co-linear. This occurs if Zj’,j”\[jj’j”] tjytin > 0. Together, we have

Ul <Yt < S6( X gt X tp). (12)

JES; JESi  jeA() 3"3"1133'3")

Consider the first sum in the last formula
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Sty > typ= >ty =Y.

JES:  j'eAi(j) JES, ' €A (5)

To bound Y, we apply Lemma 4.2 as Y is a polynomial of degree 2. Furthermore, by
the induction hypothesis, |S;| = biq?, a; ~ 6 and |4;(5)| ~ aiqg"/?(biq) < 2a:b;¢*/%. So

Eo(Y) = E(Y) < 2(big?)(a:big®?)p? = 2a;6%¢"/>.

To bound E;(Y'), observe that for any fixed j, there are at most max; |4;(j)| points j” such
that the product t;t;; appears in Y. As mentioned above, |4;(j)| < 2a;b;¢*%. Thus, we
have

E1(Y) < 2(aibig®?)p;i = 2a:0 < 4i6* = o(1).

In the last inequality, we use the fact that i = O(Q‘llogl/ 2¢) and @ = log 2q. Finally,
notice that each product ¢;t;; could appear at most twice so Ea(Y) < 2.
Now Lemma 4.2 yields that with very high probability,

Y < 3a;6%¢"? = 0(0¢'/?).

Using a similar argument, we can also prove the same statement for the other term in (12),
namely, with very high probability

Yot Y tyty) =o(6q'?).

JeSs 3. 5"|5g" 5]
This completes the proof. O

Remark 5.1 A detailed calculation shows that we can bound, with very high probability,
the second term ZjeSi tj(zj’,j”l[jj’j”} tirtin) by 1003¢/2. This yields that with very high
probability

a1 —a; > 60— (3&1'92 + 1093)

Moreover, we can also prove that with very high probability |B;| < (0+63)¢"/?. So (with
very high probability) a; 11 —a; < 0+ 63.

5.1.2 Proof of (5)

We proved that |S;1(l,u,v)| < (i+1)log*q. Consider a line [ and denote by B;(l,v) the
set of vertices © € [ such that the line (vz) intersects B;. Moreover, set B;(l,u,v) =
Bi(l,u)NB;(l,v). Observe that any point x € S;+1(l,u,v)\S;(l,u,v) must belong to either
B;(l,u,v),S;(l,u)NB;(l,v), or S;(l,v)NB;(l,u). It follows that

[Si1(lu,0)] < [Si(lu,0)[+|Bill, u,0)[+[8i(L,u) N Bi(l,0)[+]Si(l,v) N Bi(l, )]

By the induction hypothesis, we have |S;(l,u,v)| < ilog*q. So it suffices to show that the

last three terms on the right hand side are, with very high probability, at most %log4q.
Let us consider the first term |B;(l,u,v)|. Again we apply the polynomial method in a

way similar to the proof of (1). Notice that a point x € [ is in B;(l,u,v) then there exists
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J € (zu) and j" € (zv) where both j and j are chosen in B; (in other words, t; = t; = 1).

Therefore,
Bi(l,u,v) < Z( Z tj)( Z t]'/) = Z titj = Y.

z€l je(zu) j'e(zv) jj'eE(H)

Here H is a graph on S;, the set (E£(H)) of edges of H is the set of all pairs jj’ obtained
by expressing the product of the two sums. Next, we show that with very high probability
Y = O(log3 q) < %log4 q. This is a straightforward consequence of Lemma 4.2. The only
thing we need is to verify is that E;(Y) = O(1) for i = 0,1 and 2 (see the paragraph
following Corollary 4.3). It is trivial that Eo(Y) < 2 as each pair (j,5’) can occur at most
twice. Moreover,

Eo(Y) < P?(Hll?tX!Si(l')!)2 < 4p7(biq)* = 40°¢ ' < 1,

where the maximum is taken over the set of all lines . Here we use the fact |.S;(l")| < 2b;q for
every line I (as we assume the algorithm runs perfectly up to step i —1), and the definition
of pi, pi = 0(big®?) 1.
Similarly,
E1(Y) < pimax|Si(I')] < 2077 < 1.

The proofs for the other two terms are similar and omitted. O

5.1.3 Proof of (4)

We show inductively that the following holds for all plausible j with very high probability
15(1,v)| < 8jajbjq'/? +jlog"q. (13)

To apply the results in subsections 4.4. and 4.5, we set L = S;(l,v). Provided that |S;({,v)]
satisfies (13), we prove that with very high probability

’Si+1(l,1})| < 8(i—l— 1)ai+1bi+1q1/2 + (i—i— 1) log40q (14)

As in subsection 4.5, let L' be the set of surviving points in Lj; it is clear that any point
x € Si+1(l,v)\L should be in B;(l,v). Therefore,

|Six1(Lv)] < |L'+Bi(Lv)]. (15)
We bound the terms in the right hand side separately. First observe that
E(|L']) = |L|(1— PY) < Siaibir1q"/? +ilog™q, (16)

since bj+1 = bj(1—P}") by definition. Next, we apply Lemma 4.7. In order to apply this
lemma, observe that by the proof of Property (5),

a(L) < rlnaX|Si(l,u,v)| < ilog*q <log’q,
7’u’7/l)
as i < log®q. By Lemma 4.7, with very high probability
IL'| <E(L)+E(L)?10g”q. (17)
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Now let us bound |B;(l,v)| using the polynomial method. It follows from the description
of the algorithm that if a point z is in B;(l,v), then some point j on the line (zv) must be
chosen, i.e, t; = 1. Therefore

B <Y 4=V,
z€l je(av)

Next, we apply Lemma 4.2 (in fact Csernoff’s bound also applies as Y is a sum of indepen-
dent variables). Again using the induction hypothesis |S;(I")| ~ b;q; < 2b;q; for any line I',
we have

Eo(Y) < p; mlf}X!Sz‘(l')!Q < pi(2bigi)® = 460b;q"/. (18)

Moreover, as each point j appear at most once E;(Y) = 1. By Lemma 4.2, we have,
with very high probability

|Bi(1,v)| < E(Y)+ (max(E(Y),1))"/?1og?q. (19)

By (14-19), we obtain that with very high probability

1/2
|Siva(lv)] < smibiﬂql/gwlog“w(z’aibmql/mlog%) log” g+
+  40b;q"? + max(40b;q"/?, 1) 1og? q. (20)

Recall a; ~ 0, 1.1b; > b1 > 0.9b;, 1 < logSq (bi+1 can be estimated based on the induction
hypothesis). Moreover, (1) shows a;11 ~ a;+6. Using these estimates, we next verify that
the right hand side of (20) is at most

8(i+1)aiy1bir1q"*+ (i+1)log?q,

with lots of room to spare in the exponent of the logarithm.
To start, notice that

8(i+1)air1biv1q"* — 8iabir14"/* > 8a;biy1q"/?.
So we need only show,
g 1/2 40 o 1)2 T 12, 4 12 C1/2 \1/27.02
8a;bir1q7 ' +log™ q > (ia;b;11q'“+ilog'q log” ¢+ 46b;q"/* 4+ max(460b;q ' ,1)"/“log*q.
(21)

If big'/? > log®q, then
max(49biq1/2, 1)1/2 log? g < 30b;q'/?

and 12
(iaibi+1q1/2+ilog7 q) loggq < aibi+1q1/2.
Thus, the right hand side of (21) is at most
4Gbiq1/2 +39biq1/2 —i—aibi“ql/z < 8aibi+1q1/2.

Now assume that b;g'/2 < log®q. In this case, it is easy to check that the term log*®gq

on the left hand side of (21) swallows everything. This completes the proof O
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5.1.4 Proof of (2)

Now we are ready to prove the crucial property (2). Set L = S;(!) and K = 14 (in order to
apply Corollary 4.8). Notice that by Property (4)

a(L) < n%ax|SZ-(l',U)| = O(iaibiq1/2+log40 q).

Moreover, by the induction hypothesis |L| ~ b;jq > %biq. As we are in the first phase of

100 2(K+5)

the algorithm, b;q > log ™" ¢, so b;q > a(L)log q. By Corollary 4.8, with very high

probability

[1L/|~E(1L))| < [Ll1og™"q < 2biglog g,

where (as usual) L' = S;11(1).
Observe that if |L| = b;q(1+«), then E(|L'|) = b;j11q9(1+«). Therefore, by the induction
hypothesis, E(|L/|) satisfies |E(|L'|) —bi11q| < ibi11qlog~ 3. The triangle inequality yields

‘|L'|—bi+1q’ < (ilog_13q+210g_14q)bi+1q < (z’+1)bi+1qlog_13q,

completing the proof. O

5.1.5 Proofs of (3),(9), (10)

The proofs of the properties in this group are more or less identical to those of (2), (4)
and (5). The only formal differences are that we use b} instead of b; and we need only the
upper bound in (3). O

5.1.6 Proof of (8)

This proof is similar to that of (5). However, we provide some details in order to illustrate
our polynomial method.

Let X = {u,v,w,z}. For any non-empty subset X’ of X, set A;(X’) = NyexA;(a) and
Bi(X") = Nuex Bi(a). Assuming |A;(X)| < ilog®q, we prove that with very high probability
|A;41(X)| < (i+1)log®q. To start, observe

Ai1(X) CAX)UB(X)U > A(X)NBi(X\X').
X' 1<|X'|<3
Therefore, it suffices to show that with very high probability |B;(X)| < log®q and |4;(X’)N
Bi(X\X")| < log®q for all X".
To handle | B;(X)|, notice that for any x € B;(X), there should be 3.3 i i € Bjsuch
that [jzu],[jzv],[j  zw] and [j" zz] hold. This implies

STt ) DD ) D> tgw)

z€Si jljzu] 5[5 w0 35" zw] 35" w2

= E tjtj/tj//tj/// = Y
(4,4",3"3"") €T

IN

Bi(X)

o

where 7 is the index set consisting of all possible tuples (j, ', j/ J)-
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As Y is a polynomial of degree 4, we can use Corollary 4.3 to conclude the proof. It is
sufficient to show that E;(Y) = O(1) for all 0 < ¢ < 4. Trivially, E4(Y") = 1. Moreover,

Eo(Y) < p?\Si|(mlaX|S(l)|) < 2ptbig* (big)* = 20, = O(1)
Ei(Y) < pj(max|Si(D))* < 2p](big)" = 20°iq™"/* = O(1)
Eo(Y) < pQ(mlaXSi(l)Q < 2p2(biq)? = 20%¢" = 0(1)
Es(Y) < p(maxSi(l) < 2p(big) = 20g~% = O(1).

The proof concerning |A;(X") N B;(X\X')| is quite similar. In this case, the degree of
the resulting polynomial is |X\X’|. Thus, we can use log?q instead of log®q as a upper
bound but this makes no essential difference. (]

5.1.7 Proofs of (7) and (6)

First we consider (7). Let X = {u,v,w}, where u,v,w are three arbitrary point in £2;. Set
L = A;(u,v,w) and L' = LN S;41. Proceed as in the previous proof, we have

(A1 (X)] < [V ]+[Bi(X)[+ Y [A(X)NBi(X\X")], (22)
X'cX
with the last sum taken over all proper subsets of X. Assuming A4;(X) < ibig' /% +1ilog'q,
we will show that A;y1(X) < (i4+1)biy1¢"%+ (i+1)log!®
To start, observe that since each point in \S; survives with probability 1— P},

(L) < (ibig"/?+i10g' ) (1= PY) < ibis10"/2+ilog"q.

On the other hand, by (8) (see also the remark following Lemma 4.7 and the remark at the
end of this subsection),

a(L) < maX|A (u,v,w,2)| <loglq. (23)
2€Q;

So Lemma 4.7 implies that with high probability
U] <E(L)+(L|a(L))*10g° g < ibit1q"* +ilog" g+ |L|"*1og® . (24)
We next show that with very high probability
|Bi(X)| < o(bis1q"?)+1og” q, (25)

[ 4i(X") N By(X\X')| < o(bi+14"/?) +1og”q, (26)

for all X’. As the sum of the right hand sides in (24)-(26) is upper bounded by (i+
D)biy1q™? + (i+1)log™ g, our proof is complete given (25) and (26).
To verify (25), notice that by a similar argument as in the previous subsection, we have

1Bi(X)| = |Bi(wv,w)| < > Yt Zt/ S ot =

x€S; j.[jux]  j,[j’vz] 13" wx)

Furthermore,
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Eo(Y) < pfISil(max|Si0)])® < 20} (bia?®) (big)*q;"* = 26°0ig'* = @
Ei(Y) < pi(max|Si())* < 2p(big)* = 26°bi = O(1)

E2(Y) = pimax([Si(1)]) < 2pi(biq) = 204~/ = O(1)

By(Y) = 1.

Here we used the hypothesis that |S;(1)| ~ biqg < 2b;q for every [. So Lemma 4.2 yields

|Bi(X)| < a+at?logtq.
Next, by Cauchy’s inequality

1/2

a+al’?logq < 2a+loghq.

Furthermore, 2a = 463b;q'/% = o(bi+1q1/2) since 6 = o(1) and b;41 > b;/2. This concludes
the proof of (25). The proof for (26) is similar and omitted.
The proof of (6) is similar to that of (7). O

Remark 5.2 If we use a(L) < |L|log™1% q in (23), the right most formula in (24) becomes
ibi11qY* +ilog! g+ |L|log=*®q. As |L|log™q = o(biy1¢"/?), this does not influence the
rest of the proof.

5.2 Phase two

The proof of Property (1) is the same as before. The proofs of Properties (4) and (5) are
based essentially on Lemma 4.7 and more or less identical. The difficult part of this phase
is Properties (2) and (3), whose analysis is fairly technical.

5.2.1 Proofs of (4) and (5)

Let us consider (5). As usual, we set L = §; and define L' = Q1.

Observe that Property (12) of Phase 1 and that b/b; < 2 (which is a consequence of
the induction hypothesis) imply that [Q;(1)| < Klog® ¢ for some constant K at every step
in Phase 2. Therefore, a(L) < 2K log™ qa;q’%. On the other hand, since |L| ~ big> >
%bti > %(logc‘) q)q"/?, we have |L| > a(L)log!® q. Thus, Lemma 4.7 yields that with very
high probability.

V| =E(L')| < (a(L)|L)*1og” q.

Recall that E(|L'|) < L(1— P!), we have, with very high probability, that

Qi = || < (1=P)ILI+(a(L)|L])?log’q

=|Maﬂ+ﬁ%5mn%%.

As (al(LL|) )2 log? ¢ < log=2 ¢, we have
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(1= P+ (P 100) < |LI0- P a-+1og0),

concluding the proof of (5). The proof of (4) is similar and omitted. O

5.2.2 Proof of (2)

To prove (2), we first need to estimate the expectation of |T;11(v)|. This involves the
expectation of the event that a pair (z,y) survives in S;;11. The obstacle here is that if z
and y are two points in S;, then the events x € S;41 and y € S;4+1 are not independent.
The following lemma helps us to overcome this problem by saying that these two events

are almost independent in a certain sense, and therefore one can compute the desired

expectation with appropriate accuracy. For the purpose of this subsection, set § = log™ 3.

Lemma 5.3 For every x,y € S;,
|Pr(z,y € Sit1)— Pr(xz € Sit1)Pr(y € Siy1)| = 0(9).

The proof of this lemma is complicated and we defer it to the end of this subsection. Let
us now complete the proof of (2), provided Lemma 5.3.
Since 6 = log™ 3¢, it suffices to prove that with very high probability

1 .
Tos(0)] = 50001 | < 3G+ 1)6b 0"
First let us estimate E(|T;+1(v)|); by definition
E(|Ti41(v)]) = Z Pr(z,y € Siy1).

x7yes7,7[xyv]

By Lemma 5.3

| Ti(v)|Pr(z € Sip1)*(1=68) < E(|Tit1(v)]) < |T;(0)|Pr(z € Sit1)*(1+6).
Recall that b; Pr(z € Si+1) = bi+1, by the induction hypothesis we have
1 ) 1 .
Sbir1@’(1=3i0)(1=0(9)) < E(|Ti11(v)]) < 5bf110°(143i8) (14 0(9)). (27)
It now remains to show that |T;11(v)| strongly concentrates around its expected value and

we can again use Lemma 4.7. For convenience, instead of T;(v), we will consider the multi-
set

T} (v) = {«" @]z € Si\v},

where m(z) = ((xv)—2) is the multiplicity of x. It is clear that |T](v)| = 2|T;(v)|. Next,
we use Lemma 4.7 to show that |7}, (v)| is strongly concentrated. As usual, set L = T} (v)
and L' = T;11(v). To bound a(L), notice that for any v and v

|Ai(T; (v),w)] < [Ai(u)|maxm(z) < |Ai(u)|2log™ g < 4a;big**log™ g = a.
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Since |L| = |T/(v)| ~ $b?¢® = 3, by Lemma 4.7, we have with very high probability that
L[ =E(IL))| < (aB)'/?log’q. (28)

As ¢; = 100 and a; < logq (see Remark 3.9), we have that (a8)'/21og® ¢ < (b;¢*/?)3/210g% q.
On the other hand, b;g*/2 > log®q, where ¢ = 300, and bit1 > .9b; (see Reamrk 3.9). It thus
follows that (b Zq3/2)3/2 logh%q = 0(0b?, ,¢*). This implies (2) via (27) and (28), with lots of
room to spare (for instance we can replace 3 in the error term by any constant larger than
1). O
Proof of Lemma 5.3
In this proof, we ignore unnecessary sub-indices. Since
Pr(ANB)— Pr(A)Pr(B) = Pr(ANB)— Pr(A)Pr(B),

we consider Pr(u ¢ S and v ¢ S) instead of Pr(u € S and v € §). First of all, the
compensations are independent of all other. It is enough to show that the two events
UpeAm)ur(w){z € M} and UyeA( ur(w)ly € M} are almost independent, where z € A(v)U
T'(v) means that x is a point in A( ) or (unordered) pair in T'(v) and a pair x = (z1,x2) € M
means that both of x1,z9 are in M. Our proof is based on inclusion-exclusion. It is easy to
see that

Pr( U {iL'GM})PT( U {yeM})

z€A(u)UT (u) yEA(v)UT (v)
= Z (—l)l*1 Z Pr(:cl,...,wl € M)Pr(yl,...,yl € M> ,
! (@Y1 )5 (2)y,)

where ordered pairs (x,y) are chosen from (A(u)UT(u)) X (A(v)UT (v)). One way to see
the above equation is the following. Consider two identical independent experiments which
create M and M*. Then

PT( U {xeM})Pr( U {yeM})

z€A(u)UT (u) yeA(v)UT (v)

:pr( U {xEM})PT( U {yGM*})

z€A(u)UT (u) y€A(W)UT (v)

= Pr( U {xe M}n U {yEM*})

z€A(u)UT (u) y€A(W)UT (v)

= PT( U {r e M}n{y e M*})
(z.y)
On the other hand,

Pr( U f{eemin | {yeM})

z€A(u)UT (u) y€A(W)UT (v)
= Pr( U {reMin{ye M})
(z,y)

= Z (—1)l_1 Z Pr(wl,...,:):l eM and y1,...,y; € M) )

! (mlvyl):"'v(xlvyl)
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We claim that for [ = 1,---,100

Z Pr(zy,...,x, e M and vy,,...y, € M)
(zl,yl),"':(%,yl)

= Z Pr(z,,..,x, € M)Pr(y,,...,y, € M)+0(log™2q) ,
(CHRTI RENCARTS)

and for [ = 101,102 both of

Z Pr(zy,...,;ye M and y1,...,y1 € M)
(z15y1)5 ()

and
Z Pr(zy,...,op € M)Pr(y1,....,y; € M)

(1171 7y1)7"'7(xl ’yl)

are O(log=¢). Tt is easy to see that this claim implies the lemma.

Since x;,y; are not all distinct, it is convenient to rearrange them, say «,,---,a,,
B1y BV 57, so that a;’s are distinct points in A(u) U A(v), and all §;,7;’s are in
T(u)UT(v) and distinct. Moreover, each [, does not use any previously used point (in
a,-,a,0,--,0,_,) and each ~, contains exactly one previously used point. The rest
must not contain any unused point and will not be rearranged. Since [ is bounded there
are only O(1) number of {z,,y, }i=o ...; which yield given {a,3,7}. Clearly,

Pr(z,,...,x,,9,, -y, € M) < Pr(z,, -, 2,,y,, -y, € B) — st
and
PT(CCl,---,CL‘l € M)Pr(yla"'vyz S M) < PT($1,"',$l € B)Pr(yu"'ayl € B) Spr+2$+t .

Each o, is in A(u)UA(v) and there are O(abg®/?) possible choices of «,. Similarly, there
are O(b?q®) choices for each B,. For each =,, there are only O(1) choices for the used
point and once the used point z is chosen the unused point must be in lines (uz) or (vz).
Since each line contains O(log ¢) surviving points ((3) of Phase 1), there are O(log q)
choices for 7,. All together, we have O((abg®/?)"(b%¢%)*(log ¢)!) choices. If one requires
o, € A(u)NA(v) or B, € T(u)NT(v), then the number of choices reduces to O(log® ™2 ¢q) ((6)
of Phase 1) or O(log1 q) ((3) of Phase 1) respectively. Notice that pabg®? = O(log=3/%¢),
p?*b%¢® = O(log™2¢q), and plog® ¢ = O(log™3°¢). Therefore, the sum of all cases other than
t =0, a & A(u)NA(v) for all «;, and B, € T'(u)NT(v) for all §,, would be negligible,
say O(log*30 q). Furthermore, if [ > 100, then there are at least 10 distinct x, or y,. This
implies that £ # 0 or 7+2s > 10 and so both of

Z Pr(zi,..,;p € M and y1,...,y; € M)
(zl,yl);--,(xl,yl)

and
Z Pr(zy,...,xp € M)Pr(yy,...,y1 € M)

(131 )y1)7"'7($l ’yl)
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are O(log™1%¢q).

Suppose t = 0, «; & A(u)NA(v) for all o, and 8, & T'(u)NT(v) for all 5,. Then {z;}
and {y,} do not share any single point, which yields

PT(ml,m,azl,yl,---,yl S B) = Pr(:zl,---,:cl c B)Pr(yl,---,yl € B) . (29)
(It is still possible z, =z j.) Now consider
Pr(zy,...,z; € M and y1,...,y; € M|z1,....,21 € B and y1,...,y; € B) .
If we impose any condition

w € A(2), or (w,w') € T(2), (30)

for some points z,w,w’ consisting of  and y, a similar argument as above would yield
that the corresponding sum is negligible. We exclude these cases too. Let F}, be the event
{A(w)NB =0 and T(w)NB = (}. Then clearly

Pr(zi,...,x; € M and y,,....,y, € M|x,,...,x, € B and y,,...,y, € B)
= Pr("; Fo, NN, Fy;l2y,.-2, € Band y,,...,y, € B) .

Once z € B, the conditions x, € B and y, € B make the event z € M less likely. (One
may apply FKG inequality though a direct coupling argument would be easier.) Thus

Pr(ﬂinﬂﬂij\xl,...,xl € B and yi,...,y, B) < Pr(ﬂleﬂﬂij) .

On the other hand, if all surviving points in lines containing z and some point consisting of
x, or y, were not in B, say the set of such points is R(z), the conditions are irrelevant to
the event z € M unless (30) holds for w,w’ consisting z, and y,, which we have excluded.
Thus for R = U,R(z) where the union is taken all points z consisting z, and y,,

Pr(ﬂiF%. ﬂﬂijj]xl,...,a:l € B and y1,...,y; € B)
= Pr(R0B =0) Pr( M, F 00 Fyy RO B = 0)

> Pr(RﬁB = @)PT(ﬂiFmiﬂﬂijj) .

(The inequality again uses an FKG type argument.) Consequently, since |R| < (41)%log“ q
and p|R| = O(log™q),

Pr(ﬂiF:Ci ﬂﬂijj]acl,...,a:l € B and y1,...,y; € B>
2 (1_O(log720))Pr(ﬂinimﬂijj) :

Finally, it is sufficient to show that

Pr(\E..n(\E,) = Pr ( N Fx> Pr(ﬂFy]) +O0(log™g) (31)

J
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and

PT(ﬂFmi‘xn”W% GB) (1+0(log™2 PT(ﬂFm)

except for negligible cases. However, we may use exactly the same argument as above. For

example, consider
Pr(ﬂinﬁﬂij) = Pr(UinﬁUij)
i j ij

and let
K= U () UT(24)) , and L= | J(A(y:) UT () .
J
Then

Pr(Uinﬂij) :Pr( U {w € B} and {zEB}) .

(w,z)EK XL

Now the same argument used for (29) would yield (31).

5.2.3 Proof of (3)

By the induction hypothesis, we can assume that

aibi®?(1 =K (i—1)0%) < |A;(v)| < asbi(1+ K (i—1)6?),

where K is a constant larger than 16.

Let U; = B;\M;. Denote by U;(v) (B;(v), M;(v)) the set of points x in S; such that
there is u # x € U; (B;, M; respectively) satisfying that z,u,v are co-linear. Next, let B}(v)
and M/(v) be the intersection of B;(v) and M;(v) with Sj;.

As usual, we set L = A;(v), and L' = LNS;+1. Since A; and A,y are arcs, we have for
any v € ;41

| Aia ()] = [L']+[M(v)].

By the usual argument, it is easy to show that |L’| sufficiently concentrates around its
expected value. The hard part of the proof is to estimate M/(v). For the purpose of this
section, set § = log™'%¢. We shall use the following observation to bound M/ (v).

|Bi(v)] = [Ui(v)| < |M (v)] < |Bj(v)] < |Bi(v)].
The next three claims give bounds on |B;(v)], Bi(v)| and |U;(v)|, respectively.
Claim 5.4 With very high probability,
| Bi(v)| < 0big**(1+0(5)).

Proof. By definition, € B;(v) if there is j € (xv) such that j € Bj;, namely, t; = 1.

Therefore,
[Bi()[ < Y (> 1), (32)

z€S; j,[jzv]
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Every t; appears in the double sum exactly m; times, where m; is the number of points on
the line (vj) (excluding v and j). Therefore, the right hand side in (32) can be rewritten

as Y g, tam(z) =Y.
Now we apply Corollary 4.3 to bound Y. Notice that ) ¢ m(z) is exactly the quantity
T!(v) = 2T;(v) defined in the previous subsection. So we have

Eo(Y) = 2p;T5(v) ~ pib2q®(1+0(8)) ~ 0big®? > log'™ ¢, (33)

as big®'% > 1log3%q. Moreover when we start Phase two, each line has roughly log® ¢ =
log!% ¢ points, therefore

Ei1(Y) <maxm(z) < mlax]Si(l)| < 2log“ gq.

Thus, Corollary 4.3 implies that with very high probability
|Bi(v)] < [Eo(Y)[(1+0(9)).

Using the estimate of |T;(v)| in Property (2) together with (33), we have Ey(Y) <
0b;q*/%(1+0(8)), concluding the proof. O

Claim 5.5 With very high probability
|Bl(v)| > 0big*?(1 - 0(5)) — 8a;6%biq>/%.

Proof. Note that z € B](v) if and only if € S;;1 and there is at least one point on (zv)
(different from z and v) belonging to B;. Let us denote by B; (v) the set of # € S;;1 so that
there is ezactly one point on (zv) with this property. It is clear that |Bj(v)| > |B; (v)|. We
shall prove that even |Bj (v)| satisfy the claim. The trick here is that while the restriction
makes B;l(v) easy to handle, we do not lose too much as the probability that B; intersect
any line in more than one point is negligible. We can bound |B;/ (v)| by a polynomial as

follows
Bi ()= > lpes,y > H0— D t), (34)

:EESZ,|($U)|22 ],[]mv} ],75‘77[‘7111)]

where [(zv)| > 2 means that the line (zv) (including = and v) has at least three points.
Moreover, taking into account the reasons that make a point deleted, we have

Lpesiy =1=( ) tg+ D toty).
g€A;(x) 9:,9':[99'z]
So
Bz Y (=03t > ) (X 0= Y )
z€S;,|(xv)]|>2 geA;(x) 9,9',l99'x] 3 lgzv] J'#5, 5" zv]

Next, we expose the product and then split the right hand side as a sum of two terms, where
main term is va‘(m)lﬂ Zwm] t; and the error term contains everything else. Similar to
the proof of Claim 5.4, we can show that with very high probability the main term is at
least 0b;¢>/?(1—o0(8)). Using Lemma 4.2, we can also prove that the error term is at least
—8ai92b1q3/ 2. We omit the technical but rather straightforward calculation. O
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Claim 5.6 With very high probability,
U; (v)| < 66%asbig®?.

Proof. Note that for any « € U;(v) there should be a point j € (2v) different from both =
and v such that j € B; but j ¢ M;. Therefore

)< Y Yt
z,|(zv)[>2 j,[jzv]

By the description of the algorithm, there are two possible reasons that exclude j from M;:
either there are j' and j” in B; such that j,7’,5” are co-linear, or there is 7' € B; such that
(j7') intersects A;. So

> Yt s Y D6 X tted 3 4y).
x| (zv)[>2 5, [jav] z,|(zv)[225,[jzv] 57,5755 5"] J'€Ai ()
Split the right hand side into two terms « and (3, where

o = Z Z tj( Z tj/tj//).

1A

x| (xv)[>27,[Gzv] 55" [5575"]
B = Z 2ot >
z,|(zv)|>2 j,[jzv] 7'eA;(j)

Using Lemma 4.2 (or Corollary 4.3), it is relatively simple to show that with very high prob-
ability a < 50%b;¢%/% = 0(6a;b;¢*?) and § < 50%a;big*/? (again the details are omitted).
The claim follows instantly. O

Claim 5.7 If the alogithm runs perfectly up to step i—1, then b;/bi11 < 1+ 20a;.

Proof. By definition

o1 1
bivi  1—P* 1—p;max,|4;(©)[(14+0(1))’
)

2

due to Lemma 3.2 (note that in this lemma p; max, |4;(v)| is the domlnatlng term in the
upper bound). Next, due to the induction hypothesis |A;(v)| ~ a;big®/? < 2a big?/2,

pimax |A4;(v)| < 0(big>/?) ! 2@ ibig®? < ;9 a;.
Therefore
1 <1+20
Ay,
1 —pimax, [4;(v)|(1+o(1))
since fa; = o(1). This completes the proof. O
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Now we are ready to bound |M/(v)|. By Claims 5.4 and 5.7, we have, with very high
probability, that

< [Bi(V)| < 0big**(140(6))
< Obi1q>*(1420a;)(1+0(6))
< Obiy1g*?(1+30a;). (35)

|M; (v)]

On the other hand, by the second and third claims

M](v)] > Bl (0)| = [Ui(v)] = 0b:g**(1—0(6)) = 86%aibig® > — 66°aibig®/>

> sz‘_:,_lqg/z <1 - 159ai) . (36)
In (35) and (36), we use the fact that § = log™'%¢ < fa;. This way, the contribution of
0(9) is swallowed by an additional fa;.

Finally, let us estimate |L'|. We use Corollary 4.8; in order to apply this corollary, we
first need to estimate a(L) and here Property (6) of the first phase becomes crucial. Recall
that L = A;(v) so a(L) = maxyy|A4i(u,v)]. On the other hand, due to Property (6) of
Phase one, for any v and v

| Ai(u,v)| < ibig+ilog*q.

Since i < N < log®q and b;q < log™ g = log'® g, we conclude that a(L) < log'®®q. As
E(|L'|) ~ aibit1¢** > a;log® ¢ = a;10g°" q > 1og** g,
Corollary 4.8 applies and implies that with very high probability
aibis14* (1= K (i—1)6°)(1~0(8)) < |L'| < aibis1 (14K (i—1)6%)(1+0(6)). (37)

The expectation of |L'| is bounded between b;;1¢% (14 K (i—1)6?); the error term o(4)
results from the deviation tail. By (37) and (36), we now have with very high probability

Aia@)] = 4 M) > aibiad®’(1— K~ 1)60°)(1— 0(6)) + 0bi1q*(1 — 150a;)
bi+1q3/2(ai +6— Kaii02 — 15ai92)

2
Z bi+1q3/2 (ai—i—l - 93 - Kaiwz - 15&102)

In the second inequality, the difference between Ka;i and Ka;(i—1) swallows the contribu-
tion of o(d). For the third inequality, we use the fact that a;41 < a;+6+ 6% (see Remark
5.1). As a;11 > a; and K > 16, it follows that

|Ais1(0)] > ais1biv1g®?(1— K (i+1)67).
For the upper bound, it follows from (37) and (35) that

A1 (V)] < a1 ?(1+ K (i—1)02)(1+0(6)) + 0b; 116>/ (1 + 30a;)
< bi+1q3/2(ai+9+Kaii02+3ai92).

Again notice that the difference between i and ¢ —1 swallows the contribution of o(J). Due
to Remark 5.1
ai11 > a;+60— (30@92 + 1093) > a;+60— 40,1‘92,
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which implies

ai+1b¢+1q3/2(1 +Ki92 + 792)
ai 101> (1 + K (i+1)6?%),

|Aip1(v)]

VARPVAY

completing the proof. O

6 REMARKS AND OPEN QUESTIONS

The constant ¢ used in the proof is fairly large (¢ = 300). With a tighter analysis, we can
reduce it significantly (¢ = 10 is possible). On the other hand, it is not clear that we can
obtain ¢ = 1/2. Achieving ¢ = 1/2 would be best possible with respect to our method and
would imply that n(P) = O(¢"/2log"/? ).

While the best lower bound for n(P) is still linear in ¢*/2, we feel that the truth might
be w(q'/?) (perhaps, even O(q!/? log!/? q). (Here the asymptotic notation is used assuming
q — o0). The first step toward showing n(P) = w(g'/?) would be to prove that there is a
point which is covered by w(1) secants. Even this does not seem to be known and we make
the following conjecture.

Conjecture 1. Given a plane n(P) of order q and a complete arc A in it. Then there is a
point in P which is covered by w(1) secants of A, where w(1) tends to infinity with q.

The proof of Theorem 1.2 gives us a way to generalize a complete arc. Although this arc is
not completely random, the algorithm suggests that it is close to be one. If it was the case
then it would imply that Fisher’s conjecture on the average size of a complete arc is true,
up to a polylog factor.

Question 2. Is it true that there is a constant ¢ such that for any plane P a random
complete arc A (chosen uniformly from the set of all complete arcs in P ) has, with probability
close to 1, at most ¢*/2 log®q points, where q is the order of P ?

Corollary 1.3 asserts that there is always a complete arc of size between %ql/ 2 logl/ 2q
and ¢'/21og®q, for some constant c¢. Somewhat surprisingly, our method cannot be used to
produce a larger complete arc. For instance, it is still not clear whether there is a complete
arc of size between ¢/2t¢ and ¢'/2+¢ log®q, for any small constant ¢ and any constant ¢. On
the other hand, results of Hadnagy and Sz6nyi shown that for the Galois plane PG(2,q), the
possible sizes of a complete arc is dense in the interval [¢*/4,¢] (see [53] and the references
therein). It is interesting to prove a similar result for the interval [¢'/2, ¢%/4].

Acknowledgement. The authors are grateful to Professor J. Kahn for communicating
this problem.
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