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Abstract. In the k-arc connected subgraph problem, we are given a
directed graph G and an integer k and the goal is the find a subgraph of
minimum cost such that there are at least k-arc disjoint paths between
any pair of vertices. We give a simple (1 + 1/k)-approximation to the
unweighted variant of the problem, where all arcs ofG have the same cost.
This improves on the 1+2/k approximation of Gabow et al. [GGTW09].
Similar to the 2-approximation algorithm for this problem [FJ81], our
algorithm simply takes the union of a k in-arborescence and a k out-
arborescence. The main difference is in the selection of the two arbores-
cences. Here, inspired by the recent applications of the rounding by sam-
pling method (see e.g. [AGM+10, MOS11, OSS11, AKS12]), we select
the arborescences randomly by sampling from a distribution on unions
of k arborescences that is defined based on an extreme point solution of
the linear programming relaxation of the problem. In the analysis, we
crucially utilize the sparsity property of the extreme point solution to
upper-bound the size of the union of the sampled arborescences.
To complement the algorithm, we also show that the integrality gap
of the minimum cost strongly connected subgraph problem (i.e., when
k = 1) is at least 3/2 − ε, for any ε > 0. Our integrality gap instance is
inspired by the integrality gap example of the asymmetric traveling sales-
man problem [CGK06], hence providing further evidence of connections
between the approximability of the two problems.

1 Introduction

In the minimum cost k-arc connected spanning subgraph (min-cost k-ACSS)
problem, we are given a directed graph G = (V,A) with cost c : A → R on
the arcs and a connectivity requirement k. The goal is to find a spanning sub-
graph G′ = (V,A′) of G of minimum total cost which is k-arc connected, i.e.,
every pair of vertices have at least k-arc disjoint paths between them. The special
case of k = 1, 1-ACSS problem, is called the minimum cost strongly connected
subgraph problem. In the unweighted variant of k-ACSS, the minimum size k-
arc connected spanning subgraph (min-size k-ACSS) problem, where all arcs of
G have the same cost, we want to minimize the number of arcs that we choose.



2

The min-cost k-ACSS problem has a 2-approximation algorithm [FJ81], and
it has been a long standing open problem to improve this bound. Significant
attention has been given to the unweighted variant of the problem. In par-
ticular, the minimum size strongly connected subgraph problem is very well
studied [FJ81, KRY94, KRY96, Vet01, ZNI03], and the current best approxi-
mation ratio is 3/2, which is due to Vetta [Vet01]. The min-size k-ACSS prob-
lem has been shown to be easier as k increases [CT00, Gab04, GGTW09], and
the best approximation ratio is 1 + 2/k that is given in the work of Gabow
et al. [GGTW09]. This approximation ratio is almost tight as the min-size k-
ACSS problem does not admit (1 + ε/k)-approximation, for some fixed ε > 0,
unless P=NP [GGTW09]. Similar to the directed case, the minimum size k-edge
connected subgraph spanning problem, an undirected variant of the min-size k-
ACSS problem, is known to be easier as k increases, and the best known ap-
proximation ratio for this problem is 1 + 1/(2k) + O(1/k2) due to Gabow and
Gallagher [GG08].

1.1 Our Results

In this paper, we give improved upper and lower bounds for the k-ACSS prob-
lem. We first show the following improved algorithms for the min-size k-ACSS
problem.

Theorem 1. For any k ≥ 1, there is a min{7/4, 1 + 1/k}-approximation algo-
rithm for the min-size k-ACSS problem.

Similar to the simple 2-approximation algorithm for the minimum-cost k-
ACSS problem, our algorithm takes the union of a k in-arborescence and a k
out-arborescence. The main difference is in the selection of the two arborescences.
Here, we select the arborescences randomly by sampling from a distribution on
unions of k arborescences that is defined by the linear programming relaxation
of the problem. In particular, we write a convex combination of the unions of
k-arborescences such that the marginal probability of each arc is bounded above
by its fraction in the solution of LP relaxation.

The algorithm essentially employs the rounding by sampling method that
recently has been applied to various problems in the algorithm design and on-
line optimization literature (c.f. [AGM+10, MOS11, OSS11, AKS12]), while the
analysis is much simpler in our setting. Here, the main technical difference is a
crucial use of the extreme point solutions of LP relaxation. In particular, because
of the sparsity of the extreme point solutions, we can argue that the union of k
in-arborescences and k out-arborescences is not much larger than the size of the
support of the LP extreme point solution and thus the size of the optimum.

Our result improves on the (1+ 2
k )-approximation of Gabow et al. [GGTW09]

for the min-size k-ACSS problem, for any k > 0. Furthermore, for the minimum
size strongly connected subgraph problem, while we do not improve the approx-
imation factor of 3

2 [Vet01], our algorithm is much simpler and gives a possible
direction for weighted version of the problem.
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To complement the positive results, we prove that the integrality gap of
the natural linear programming relaxation of the strongly connected subgraph
problem is bounded below by 3/2− ε for any ε > 0.

Theorem 2. For any ε > 0, the integrality gap of the standard linear program-
ming relaxation for the minimum cost strongly connected subgraph problem is at
least 3

2 − ε.

To the best of our knowledge, there is no explicit construction that gives
a lower bound on the integrality gap of the minimum cost strongly connected
subgraph problem. Our integrality gap example builds on a similar construction
for the asymmetric traveling salesman problem [CGK06] and shows stronger
connections between the two problems.

1.2 Notations

Let δ+G(U) := {(u, v) ∈ E : u ∈ U, v ∈ V \U} denote the set of arcs leaving U in
a graph G; if G is clear in the context, we will skip the subscript.

A graph G is k-arc connected if and only if every (proper) subset of vertices
U ⊂ V have at least k leaving arcs, i.e., |δ+G(U)| ≥ k, and G is strongly connected
if it is 1-arc connected. We may drop the subscript if G is clear in the context.
We use the following Linear Programming relaxation for k-ACSS.

(LP-ACSS) minimize
∑
a∈A

caxa

subject to x(δ+(U)) ≥ k ∀U 6= ∅, U ( V

0 ≤ xa ≤ 1 ∀e ∈ E,

where x(δ+(U)) =
∑
a∈δ+(U) xa. Throughout the paper x will always be an

optimum solution of the (LP-ACSS).
For any vector y : A→ R, and a set F ⊂ A of arcs, y(F ) :=

∑
a∈F ya, is the

sum of the values of the arcs in F , and c(F ) :=
∑
a∈F ca is the sum of the cost

of the arcs in F . Also, χ(F ) denotes the characteristic vector of the set F , i.e.,
χ(F )a = 1 if a ∈ F and χ(F )a = 0 otherwise.

2 An Approximation Algorithm for Min-Size k-ACSS

In this section, we prove Theorem 1: given a graph G, we give a polynomial time
algorithm that finds a k-arc connected subgraph of G such that it has no more
than min{1+1/k, 7/4} of the arcs of the optimum solution. Before describing the
algorithm, we need to recall some of the properties of arborescences in directed
graphs.

Given a directed graph G and a (root) vertex r ∈ V , an r-out arborescence
T of G is a directed tree rooted at r that contains a path from r to every other
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vertex of G. An r-out k-arborescence is a subgraph T of G that is the union of k
arc-disjoint r-out arborescences. An r-in arborescence and an r-in k-arborescence
are defined analogously. The following polyhedron plays an important role in the
design and analysis of our algorithm.

P out =
{
y : y(δ+(U)) ≥ k, ∀∅ 6= U ( V \ {r}, 0 ≤ y ≤ 1

}
Frank [Fra79] showed that P out is the up hull of the convex hull of r-out

k-arborescences (see Corollary 53.6a [Sch03]), and it can be seen that every
feasible solution of (LP-ACSS) is a point in P out. Vempala and Carr [CV02]
gave a polynomial-time algorithm that allows us to write a point x ∈ P out as a
convex combination of k arc-disjoint arborescences. Their algorithm requires a
polynomial-time algorithm for finding an r-out k-arborescences [Edm73, Gab91].

Lemma 1. [Fra79, CV02, Edm73, Gab91] P out is the convex hull of subsets
of A containing r-out k-arborescences. Moreover, given any fractional solution
y ∈ P out, there is a polynomial time algorithm that finds a convex combination
of r-out k-arborescences, T1, . . . , Tl, such that

y ≥
l∑
i=1

λiχ(Ti).

The above lemma holds analogously for the r-in arborescences. Now, since
x ∈ P out, we can write a distribution of r-out(in) k-arborescences such that
probability of each arc a ∈ A chosen in a random k-arborescence is bounded
above by xa:

Corollary 1. There are distributions Din(r) and Dout(r) of r-in k-arborescences
and r-out k-arborescences, such that the marginal value of each arc a ∈ A is
bounded above by xa, i.e., for all arcs a ∈ A,

PT∼Din(r) [a ∈ T ] ≤ xa,
PT∼Dout(r) [a ∈ T ] ≤ xa.

Moreover, these distributions can be computed in polynomial time.

Now, we are ready to describe our algorithm. We sample k-arborescences Tin
and Tout independently from Din and Dout, respectively, and we then return
Tin ∪ Tout as an output. The details are described in Algorithm 1.

Next, we show that the approximation ratio of the above algorithm is no
more than 1 + 1/k.

Theorem 3. For any directed graph G, Algorithm 1 always produces a k-arc
connected subgraph of G such that the expected size of the solution is no more
than min{7/4, 1 + 1/k} of the optimum.

Proof. First, we show that the union of any pair of r-in and r-out k-arborescences
is k-arc connected. Let Tin(Tout) be a r-in (r-out) k-arborescence, and H =
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Algorithm 1 Approximation Algorithm for Min-Size k-ACSS

1: Solve (LP-ACSS) to get an optimum extreme point solution x.
2: Find distributions Din(r) and Dout(r) on r-in and r-out k-arborescences, respec-

tively, such that the marginal value of each arc a ∈ A is bounded above by xa.
3: Sample an r-in k-arborescence Tin from Din(r) and an r-out k-arborescence Tout,

independently, from Dout(r).
4: return Tin ∪ Tout.

Tin ∪ Tout. Since both Tin and Tout are unions of k arc-disjoint arborescences,
there are k arc-disjoint paths from each of the vertices to r and k arc-disjoint
paths from r to each of the vertices. Therefore, H remains strongly connected
after removing any set of k − 1 arcs. Hence, H is k-arc connected.

It remains to show that the expected size of the solution is no more than
min{1 + 1/k, 7/4} of the optimum, i.e.,

ETin∼Din(r),Tout∼Dout(r) [|Tin ∪ Tout|]
|OPT|

≤ min

{
7

4
, 1 +

1

k

}
.

To simplify the notation, we will skip the subscript and write E [|Tin ∪ Tout|]
to mean ETin∼Din(r),Tout∼Dout(r) [|Tin ∪ Tout|]. Similarly, we will skip the sub-
scripts for PTin∼Din(r) [a ∈ Tin] and PTout∼Dout(r) [a ∈ Tout].

Since Tin and Tout are chosen independently,

E [|Tin ∪ Tout|] =
∑
a∈A
{P [a ∈ Tin] + P [a ∈ Tout]−P [a ∈ Tin] ·P [a ∈ Tout]}

≤
∑
a∈A

2xa −
∑
a∈A

x2a.

The last inequality follows from Corollary 1 and the fact that xa ≤ 1 for
all a ∈ A. Let F := {a : 0 < xa < 1} be the set of the fractional arcs (i.e.,
set of arcs with non-integer values in the solution of (LP-ACSS)). Since x is an
optimal solution of (LP-ACSS), |OPT| ≥

∑
a∈A xa. Therefore,

E [|Tin ∪ Tout|]
|OPT|

≤ 1 +

∑
a∈A xa −

∑
a∈A x

2
a∑

a∈A xa

= 1 +
x(F )−

∑
a∈F x

2
a

x(A)

≤ 1 +
x(F )− x(F )2/|F |

x(A)
, (1)

where the last inequality follows from Jenson’s inequality and the fact that
f(t) = −t2 is a concave function.

Since x is an extreme point solution of (LP-ACSS), x is a sparse vector. It
follows from the work of Melkonian and Tardos [MT04] (see also [GGTW09]),
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that the number of fractional arcs, |F |, is no more than 4n. Hence,

x(F )− x(F )2/|F |
x(A)

≤ x(F )− x(F )2/4n

x(A)
≤ n

x(A)
≤ 1

k
, (2)

where the second inequality follows since x(F ) − x(F )2/4n attains its maxi-
mum at x(F ) = 2n, and the last inequality follows from the fact that x(A) =∑
v∈V x(δ+(v)) ≥ nk. On the other hand, since x(F ) ≤ x(A), we get

x(F )− x(F )2/|F |
x(A)

≤ 1

2
+
x(F )− x(F )2/2n

2x(A)
≤ 1

2
+

n

4x(A)
≤ 3

4
. (3)

The theorem simply follows by putting equations (1),(2),(3) together. ut

Remark 1. Since the distributions Din(r) and Dout(r) can be constructed such
that the support of each distribution has size only polynomially large in n, the
algorithm can be derandomized simply by choosing a pair of k-arborescences
that have the minimum number of arcs in their union.

3 A Lower Bound on the Integrality Gap

In this section, we prove Theorem 2: we show a lower-bound of 1.5− ε, for any
arbitrary small ε > 0, on the integrality gap of (LP-ACSS) for k = 1. Our
construction is based on the LP-gap construction of the asymmetric traveling
saleman problem by Charikar, Goemans and Karloff [CGK06].

3.1 Construction

Let r > 0 be an integral parameter that will be defined later. We start by
defining the integrality gap example, G(d, s, t), by a recursive construction of
depth d. In any graph G(d, s, t), d is the depth, r is the number of columns, s, t
are the source, sink vertices, respectively. We allow s and t to be the same vertex.
We will construct G(d, s, t) inductively such that it contains exactly r copies of
G(d− 1, ., .).

We start by describing G(1, s, t). The graph consists of s, t and r distinct
vertices v1, . . . , vr. Let v0 = s and vr+1 = t; note that v0 and vr+1 may be the
same depending on the given parameters s and t. For any 1 ≤ i ≤ r + 1, we
include arcs (vi, vi−1) and (vi−1, vi) in G(1, s, t). Therefore,

A(G(1, s, t)) := {(vi−1, vi), (vi, vi−1), 1 ≤ i ≤ r + 1}.

Next, we define G(d, s, t). The graph consists of s, t and r distinct copies of
G(d − 1, ., .). In particular, let v1, . . . , vr, u1, . . . , ur be 2r distinct vertices, and
v0 = ur+1 = s and vr+1 = u0 = t. For any 1 ≤ i ≤ r, include a distinct copy of
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G(d− 1, ., .) with source ui and sink vi. Also, for any 1 ≤ i ≤ r + 1, include the
arcs (vi, vi−1) and (ui−1, ui). Therefore,

A(G(d, s, t)) := {(ui−1, ui), (vi, vi−1), 1 ≤ i ≤ r+1}∪

{
r⋃
i=1

A(G(d− 1, ui, vi))

}
.

Figure 3.1 illustrates the graph G(3, s, s) for r = 3.
Our integrality gap example is Gd := G(d, s, s), where the source and the sink

are unified. The ith column of Gd is defined to be the ith copy of the G(d−1, ., .),

i.e., G
(i)
d := G(d − 1, ui, vi). The set of arcs that connect the r columns with s

and t, i.e., A(Gd) \
⋃r
i=1A(G

(i)
d ), are denoted by dth level arcs. Similarly, the lth

level arcs of Gd are defined to be set of arcs included at the lth level of induction.

For example, the (d− 1)th level arcs of Gd are
⋃r
i=1

(
A(G

(i)
d ) \

⋃r
j=1A(G

(i;j)
d )

)
,

where G
(i;j)
d is the jth column of G

(i)
d .

We define the costs of the arcs of Gd such that, for any 1 ≤ l ≤ d, the total
cost of the arcs at level l is equal to 1. In other words, the cost of each arc at level
l, cd(l), is the reciprocal of the number of arcs at level l. By the construction of
Gd, we have

cd(l) :=
1

2(r + 1)rd−l
. (4)

s s

v
1

v
2

v
3

u
1

u
2

u
3

Fig. 1. An illustration of the graph G(3, s, s), for r = 3. Note that the vertices labeled
“s” on the left and on the right are the same.

3.2 Lower Bounding the Integrality Gap

We show that for any d > 0, and for a sufficiently large r, the integrality gap of
the instance G(d, s, s) is at least 3/2−O(1/d).

Theorem 4. For any d > 0 and r ≥ d, the integrality gap of the instance
G(d, s, s) is at least 3/2− 8/d.



8

First, we show that the optimal value of the LP is at most d/2. Define
x∗a := 1/2 for all arcs a ∈ A(Gd). Charikar et al. [CGK06] show that x∗ belongs
to the Held-Karp relaxation polytope [HK70]. Since any solution of the Held-
Karp relaxation polytope is a feasible solution to (LP-ACSS) for k = 1, x∗ is
also a feasible solution to (LP-ACSS). Furthermore, since the sum of the cost
of the arcs of Gd is d, i.e., c(A(Gd)) = d, we have

∑
a c(a)x∗a = d/2. Hence, the

optimal value of LP is at most d/2.

Lemma 2 (Charikar et al. [CGK06]). For k = 1, the optimum value of
(LP-ACSS) for the graph Gd is at most d/2.

For any d > 0, let Hd be the minimum cost strongly connected subgraph of
Gd, and T (d) := c(A(Hd)) be the cost of Hd. In the rest of the section, we prove
the following lemma:

Lemma 3. For all d > 0,

T (d) ≥ 3d− 1

4
− 3d

r
. (5)

Let H
(i)
d := Hd∩G(i)

d be the ith column of Hd. Observe that H
(i)
d can be incident

to (at most) four arcs of the dth level arcs of Hd. Let

Ad(i) := {(vi, vi−1), (vi+1, vi), (ui−1, ui), (ui, ui+1)} ∩A(Hd),

be the set of those arcs. We can lower-bound c(A(H
(i)
d )) based on the number of

arcs that is incident to H
(i)
d (note that since Hd is strongly connected, |Ad(i)| ≥

2):

Case 1: |Ad(i)| ≥ 3
In this case, we must have

c(A(H
(i)
d )) ≥ T (d− 1)/r. (6)

The inequality essentially follows from the fact that H
(i)
d is a strongly con-

nected subgraph of Gd−1. This is because the remaining arcs of the graph,

Hd \ H(i)
d , can only connect (or unify) the source and sink of H

(i)
d , i.e., ui

and vi. The 1/r factor follows from the fact that the cost of each arc of Gd−1
is r times the corresponding arc in G

(i)
d .

Case 2: |Ad(i)| = 2, and each of ui and vi is incident to exactly one arc of Ad(i)
Similar to the previous case, here we have

c(A(H
(i)
d )) ≥ T (d− 1)/r. (7)

As we will see in Lemma 4, at most two columns of Hd may satisfy this case.

Therefore, although we have the worse lower-bound on c(H
(i)
d ) in this case,

it has an insignificant effect on the final lower-bound.
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Case 3: |Ad(i)| = 2, and one of ui or vi is incident to none of the arcs of Ad(i)

Here we obtain a better lower-bound. For 1 ≤ j ≤ r, let H
(i;j)
d be the jth col-

umn of H
(i)
d with source ui,j and sink vi,j . It follows that the only ui, vi (or

vi, ui) path in Hd is the one that is made by the d−1 level arcs connecting the

columns ofH
(i)
d , i.e., ui, ui,1, ui,2, . . . , ui,r, vi (resp. vi, vi,r, vi,r−1, . . . , vi,1, ui).

Therefore, H
(i)
d must contain all of the (d−1)th level arcs of G

(i)
d . Since each

column of H
(i)
d is incident to 4 arcs of level (d−1)th, by repeated application

of case 1, we obtain

c(A(H
(i)
d )) ≥ 2(r + 1)cd(d− 1) +

r∑
j=1

c(A(H
(i;j)
d ))

= 2(r + 1)cd(d− 1) +
T (d− 2)

r
. (8)

Next, we show that there are at most 2 columns satisfying the second case.

v
1

v
2

v
3

u
1

u
2

u
3

s s

v
4

u
4

Fig. 2. An illustration of Hd where the second column satisfies Case 2. The black arcs
represent the arcs of Hd, and grey arcs represent the removed arcs. Observe that every
arc at level d is a min-cut of Hd.

Lemma 4. At most two columns of Hd satisfy the second case.

Proof. The proof is a simple case analysis argument. First, observe that there ex-
ists a column satisfying the second case in Hd if and only if (vi, vi−1), (ui−1, ui) /∈
Hd for some 1 ≤ i ≤ r+1. Now, suppose this is the case. It then follows that Hd

must contain all arcs at level d except these two arcs because each of the other
arcs is a min-cut of Hd. See Figure 3.2. Therefore, all except (at most) two of
the columns of Hd are adjacent to exactly 4 arcs at level d. ut

Now we are ready to prove Lemma 3.
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Proof of Lemma 3. We prove by induction. First observe that T (0) = 0 and
T (1) = 1/2 satisfying (5). Let N1, N2, (r −N1 −N2) be the number of columns
satisfying case 1, 2, 3, respectively. We divide the cost of each arc at level d
equally between the columns incident to it. This incurs a cost of 3cd(d)/2 to the
columns satisfying case 1, cd(d) to the rest of the columns and at least cd(d) to
the source vertex s (note that s is adjacent to at least two arcs at level d). Using
equations (6), (7), (8) we get:

T (d) ≥ cd(d) + min
0≤N1,N2≤r

{
N1

(
3cd(d)

2
+
T (d− 1)

r

)
+N2

(
cd(d) +

T (d− 1)

r

)
+ (r −N1 −N2)

(
cd(d) + 2(r + 1)cd(d− 1) +

T (d− 2)

r

)}
≥ min

0≤N≤r

{
N

(
3cd(d)

2
+
T (d− 1)

r

)
+ (r −N)

(
cd(d) + 2(r + 1)cd(d− 1) +

T (d− 2)

r

)}
≥ min

0≤α≤1

{
α

(
3r

4(r + 1)
+ T (d− 1)

)
+ (1− α)

(
3r

2(r + 1)
+ T (d− 2)

)}
≥ min {3/4 + T (d− 1), 3/2 + T (d− 2)} − 3/r.

The second inequality follows from the fact that N2 ≤ 2. The third inequality
follows from equation (4), and the last one follows from a simple algebra.

Now, we may apply the induction hypothesis to T (d− 1) and T (d− 2). We
get

T (d) ≥ min

{
3

4
+

3(d− 1)− 1

4
− 3(d− 1)

r
,

3

2
+

3(d− 2)− 1

4
− 3(d− 2)

r

}
− 3

r

≥ 3d− 1

4
− 3d

r
,

which completes the proof. ut

This completes the proof of Theorem 4.

4 Conclusion

We presented a simple (1 + 1/k)-approximation algorithm based on the round-
ing by sampling method for the minimum size k-arc connected subgraph prob-
lem. Unlike recent applications of the rounding by sampling method [AGM+10,
OSS11], our algorithm has a flavor of the iterated rounding method [Jai01] in its
particular use of the extreme point solutions. The main open problem is to find
a better than factor 2-approximation for the minimum cost strongly connected
subgraph problem.

We also showed that the integrality gap of the minimum cost strongly con-
nected subgraph problem is at least 1.5 − ε, for any ε > 0. This leaves an
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interesting open question whether the lower bound of 1 + Ω(1/k) is achievable
for the minimum size k-arc connected subgraph problem as well.

Acknowledgments: We thank Joseph Cheriyan for useful discussions on the
preliminary construction of the integrality-gap instance.
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